TY - JOUR
T1 - The Fokker-Planck operator at a continuous phase transition
AU - Schwartz, Moshe
PY - 2003/7/11
Y1 - 2003/7/11
N2 - I consider a physical system described by a continuous field theory and enclosed in a large but finite cubical box with periodic boundary conditions. The system is assumed to undergo a continuous phase transition at some critical point. The ψ4heory that is a continuous version of the Ising model is such a system but there are many other examples corresponding to higher spin, higher symmetry etc. The eigenfunctions of the corresponding Fokker-Planck (FP) operator can be chosen, of course, to be eigenfunctions of the momentum operator. It is shown that the eigenvalues of the FP operator, corresponding to each eigenvalue q of the momentum operator, evaluated at a transition point of the finite system, accumulate at zero, when the size of the system tends to infinity. There are many reasonable ways of defining a critical temperature of a finite system, which tends to the critical temperature of the infinite system as the size of the system tends to infinity. The accumulation of eigenvalues is neither affected by the specific choice of critical temperature of the finite system nor by whether the system is below or above its upper critical dimension.
AB - I consider a physical system described by a continuous field theory and enclosed in a large but finite cubical box with periodic boundary conditions. The system is assumed to undergo a continuous phase transition at some critical point. The ψ4heory that is a continuous version of the Ising model is such a system but there are many other examples corresponding to higher spin, higher symmetry etc. The eigenfunctions of the corresponding Fokker-Planck (FP) operator can be chosen, of course, to be eigenfunctions of the momentum operator. It is shown that the eigenvalues of the FP operator, corresponding to each eigenvalue q of the momentum operator, evaluated at a transition point of the finite system, accumulate at zero, when the size of the system tends to infinity. There are many reasonable ways of defining a critical temperature of a finite system, which tends to the critical temperature of the infinite system as the size of the system tends to infinity. The accumulation of eigenvalues is neither affected by the specific choice of critical temperature of the finite system nor by whether the system is below or above its upper critical dimension.
UR - http://www.scopus.com/inward/record.url?scp=0037489797&partnerID=8YFLogxK
U2 - 10.1088/0305-4470/36/27/304
DO - 10.1088/0305-4470/36/27/304
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0037489797
SN - 0305-4470
VL - 36
SP - 7507
EP - 7515
JO - Journal of Physics A: Mathematical and General
JF - Journal of Physics A: Mathematical and General
IS - 27
ER -