The Fokker-Planck operator at a continuous phase transition

Moshe Schwartz*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


I consider a physical system described by a continuous field theory and enclosed in a large but finite cubical box with periodic boundary conditions. The system is assumed to undergo a continuous phase transition at some critical point. The ψ4heory that is a continuous version of the Ising model is such a system but there are many other examples corresponding to higher spin, higher symmetry etc. The eigenfunctions of the corresponding Fokker-Planck (FP) operator can be chosen, of course, to be eigenfunctions of the momentum operator. It is shown that the eigenvalues of the FP operator, corresponding to each eigenvalue q of the momentum operator, evaluated at a transition point of the finite system, accumulate at zero, when the size of the system tends to infinity. There are many reasonable ways of defining a critical temperature of a finite system, which tends to the critical temperature of the infinite system as the size of the system tends to infinity. The accumulation of eigenvalues is neither affected by the specific choice of critical temperature of the finite system nor by whether the system is below or above its upper critical dimension.

Original languageEnglish
Pages (from-to)7507-7515
Number of pages9
JournalJournal of Physics A: Mathematical and General
Issue number27
StatePublished - 11 Jul 2003


Dive into the research topics of 'The Fokker-Planck operator at a continuous phase transition'. Together they form a unique fingerprint.

Cite this