TY - JOUR
T1 - The effects of smoking and nicotine ingestion on exercise heat tolerance
AU - Druyan, Amit
AU - Atias, Danit
AU - Ketko, Itay
AU - Cohen-Sivan, Yoav
AU - Heled, Yuval
N1 - Publisher Copyright:
© 2017 Walter de Gruyter GmbH, Berlin/Boston.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Smoking has a thermogenic effect and is associated with low physical performance. Nevertheless, a direct, quantitative effect of acute smoking on exercise heat tolerance has not been reported. Sixteen healthy young male volunteers, eight cigarette smokers, and eight non-smokers participated in the study. All subjects performed a maximal oxygen consumption test (VO2max) and a standardized heat tolerance test (HTT) after at least 12 h without smoking under the following conditions: no nicotine exposure, 10 min after nicotine exposure (2 mg nicotine lozenge), and 10 min after smoking two cigarettes (0.8 mg nicotine in each cigarette, smokers only). There was no significant effect of nicotine exposure on physiological performance and heat tolerance in the non-smokers group. In the smokers group, cigarette smoking, but not nicotine ingestion, resulted with higher heart rate (by 9±9 bpm) at the end of the HTT (p<0.05). Moreover, both smoking and nicotine ingestion increased smokers' rectal temperature at the end of the HTT (by 0.24±0.16°C and 0.21±0.26°C, respectively, p<0.05) and were associated with higher sweat rate during the HTT (by 0.08±0.07 g/h and 0.06±0.08 g/h, respectively, p<0.05). Heart rate variability (HRV) analysis also revealed a higher LF/HF (low frequency/high frequency) ratio after exposure to nicotine and smoking in the smokers group compared with no exposure (2.13±2.57 and 2.48±2.76, respectively, p<0.05), indicating a higher sympathetic tone. According to this preliminary study, cigarette smoking and nicotine ingestion increase the physiological strain during a HTT in smokers. Acute smoking may, therefore, increase heat intolerance and the risk to heat injuries.
AB - Smoking has a thermogenic effect and is associated with low physical performance. Nevertheless, a direct, quantitative effect of acute smoking on exercise heat tolerance has not been reported. Sixteen healthy young male volunteers, eight cigarette smokers, and eight non-smokers participated in the study. All subjects performed a maximal oxygen consumption test (VO2max) and a standardized heat tolerance test (HTT) after at least 12 h without smoking under the following conditions: no nicotine exposure, 10 min after nicotine exposure (2 mg nicotine lozenge), and 10 min after smoking two cigarettes (0.8 mg nicotine in each cigarette, smokers only). There was no significant effect of nicotine exposure on physiological performance and heat tolerance in the non-smokers group. In the smokers group, cigarette smoking, but not nicotine ingestion, resulted with higher heart rate (by 9±9 bpm) at the end of the HTT (p<0.05). Moreover, both smoking and nicotine ingestion increased smokers' rectal temperature at the end of the HTT (by 0.24±0.16°C and 0.21±0.26°C, respectively, p<0.05) and were associated with higher sweat rate during the HTT (by 0.08±0.07 g/h and 0.06±0.08 g/h, respectively, p<0.05). Heart rate variability (HRV) analysis also revealed a higher LF/HF (low frequency/high frequency) ratio after exposure to nicotine and smoking in the smokers group compared with no exposure (2.13±2.57 and 2.48±2.76, respectively, p<0.05), indicating a higher sympathetic tone. According to this preliminary study, cigarette smoking and nicotine ingestion increase the physiological strain during a HTT in smokers. Acute smoking may, therefore, increase heat intolerance and the risk to heat injuries.
KW - heat tolerance
KW - heat tolerance test (HTT)
KW - nicotine
KW - physical performance
KW - smoking
UR - http://www.scopus.com/inward/record.url?scp=85016214290&partnerID=8YFLogxK
U2 - 10.1515/jbcpp-2016-0065
DO - 10.1515/jbcpp-2016-0065
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 27831921
AN - SCOPUS:85016214290
SN - 0792-6855
VL - 28
SP - 167
EP - 170
JO - Journal of Basic and Clinical Physiology and Pharmacology
JF - Journal of Basic and Clinical Physiology and Pharmacology
IS - 2
ER -