The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction

Orna Tsur-Gang, Emil Ruvinov, Natalie Landa, Radka Holbova, Micha S. Feinberg, Jonathan Leor, Smadar Cohen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

129 Scopus citations

Abstract

Adverse cardiac remodeling and dysfunction after myocardial infarction (MI) is associated with (BioLineRx, BL-1040 myocardial implant) excessive damage to the extracellular matrix. Biomaterials, such as the in situ-forming alginate hydrogel, provide temporary support and attenuate these processes. Here, we tested the effects of decorating alginate biomaterial with cell adhesion peptides, containing the sequences RGD and YIGSR, or a non-specific peptide (RGE), in terms of therapeutic outcome soon after MI. The biomaterial (i.e., both unmodified and peptide-modified alginate) solutions retained the ability to flow after cross-linking with calcium ions, and could be injected into 7-day infarcts, where they underwent phase transition into hydrogels. Serial echocardiography studies performed before and 60 days after treatment showed that alginate modification with the peptides reduced the therapeutical effects of the hydrogel, as revealed by the extent of scar thickness, left ventricle dilatation and function. Histology and immunohistochemistry revealed no significant differences in blood vessel density, scar thickness, myofibroblast or macrophage infiltration or cell proliferation between the experimental groups BioLineRx BL-1040 myocardial implant. Our studies thus reveal that the chemical and physical traits of the biomaterial can affect its therapeutical efficacy in attenuating left ventricle remodeling and function, post-MI.

Original languageEnglish
Pages (from-to)189-195
Number of pages7
JournalBiomaterials
Volume30
Issue number2
DOIs
StatePublished - Jan 2009

Funding

FundersFunder number
Israel Science Foundation793/04

    Keywords

    • Alginate modification
    • BioLineRx BL-1040 myocardial implant
    • Cell adhesion peptides
    • Myocardial infaction
    • Tissue regeneration

    Fingerprint

    Dive into the research topics of 'The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction'. Together they form a unique fingerprint.

    Cite this