TY - JOUR
T1 - The effect of the repression of oxidative stress on tenocyte differentiation
T2 - A preliminary study of a rat cell model using a novel differential tensile strain bioreactor
AU - Hsiao, Ming Yen
AU - Lin, Ping Cheng
AU - Liao, Wei Hao
AU - Chen, Wen Shiang
AU - Hsu, Chia Hsien
AU - He, Cheng Kun
AU - Wu, Ya Wen
AU - Gefen, Amit
AU - Iafisco, Michele
AU - Liu, Lixin
AU - Lin, Feng Huei
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/7/2
Y1 - 2019/7/2
N2 - Because of limitations in the current understanding of the exact pathogenesis of tendinopathy, and the lack of an optimal experimental model, effective therapy for the disease is currently unavailable. This study aims to prove that repression of oxidative stress modulates the differentiation of tendon-derived cells (TDCs) sustaining excessive tensile strains, and proposes a novel bioreactor capable of applying differential tensile strains to cultured cells simultaneously. TDCs, including tendon-derived stem cells, tenoblasts, tenocytes, and fibroblasts, were isolated from the patellar tendons of Sprague-Dawley rats. Cyclic uniaxial stretching with 4% or 8% strain at 0.5 Hz for 8 h was applied to TDCs. TDCs subjected to 8% strain were treated with epigallocatechin gallate (EGCG), piracetam, or no medication. Genes representing non-tenocyte lineage (Pparg, Sox9, and Runx2) and type I and type III collagen were analyzed by quantitative polymerase chain reaction. The 8% strain group showed increased expression of non-tenocyte lineage genes and type III/type I collagen ratios compared with the control and 4% strain groups, and the increased expression was ameliorated with addition of EGCG and piracetam. The model developed in this work could be applied to future research on the pathophysiology of tendinopathy and development of treatment options for the disease. Repression of oxidative stress diminishes the expression of genes indicating aberrant differentiation in a rat cell model, which indicates potential therapeutic intervention of tendinopathy, the often relentlessly degenerate condition.
AB - Because of limitations in the current understanding of the exact pathogenesis of tendinopathy, and the lack of an optimal experimental model, effective therapy for the disease is currently unavailable. This study aims to prove that repression of oxidative stress modulates the differentiation of tendon-derived cells (TDCs) sustaining excessive tensile strains, and proposes a novel bioreactor capable of applying differential tensile strains to cultured cells simultaneously. TDCs, including tendon-derived stem cells, tenoblasts, tenocytes, and fibroblasts, were isolated from the patellar tendons of Sprague-Dawley rats. Cyclic uniaxial stretching with 4% or 8% strain at 0.5 Hz for 8 h was applied to TDCs. TDCs subjected to 8% strain were treated with epigallocatechin gallate (EGCG), piracetam, or no medication. Genes representing non-tenocyte lineage (Pparg, Sox9, and Runx2) and type I and type III collagen were analyzed by quantitative polymerase chain reaction. The 8% strain group showed increased expression of non-tenocyte lineage genes and type III/type I collagen ratios compared with the control and 4% strain groups, and the increased expression was ameliorated with addition of EGCG and piracetam. The model developed in this work could be applied to future research on the pathophysiology of tendinopathy and development of treatment options for the disease. Repression of oxidative stress diminishes the expression of genes indicating aberrant differentiation in a rat cell model, which indicates potential therapeutic intervention of tendinopathy, the often relentlessly degenerate condition.
KW - Cell model
KW - Oxidative stress
KW - Tendinopathy
UR - http://www.scopus.com/inward/record.url?scp=85070473667&partnerID=8YFLogxK
U2 - 10.3390/ijms20143437
DO - 10.3390/ijms20143437
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 31336919
AN - SCOPUS:85070473667
SN - 1661-6596
VL - 20
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 14
M1 - 3437
ER -