The effect of simulated hypervelocity space debris on polymers

R. Verker, N. Eliaz, I. Gouzman, S. Eliezer, M. Fraenkel, S. Maman, F. Beckmann, K. Pranzas, E. Grossman

Research output: Contribution to journalArticlepeer-review

Abstract

Space debris population in low Earth orbit has been increasing constantly with the increase in spacecraft missions. Hypervelocity space debris impacts limit the functionality of polymeric outer surfaces and, in extreme cases, might cause a total loss of a spacecraft. In this work, the fracture of Kapton films by ultrahigh velocity impacts was studied. A laser-driven flyer ground simulation system was used to accelerate aluminum flyers to impact velocities as high as 2.9 km/s against polymer films with different thicknesses. Scanning electron microscopy was used to characterize the fracture morphology. Impact effects on the internal structure of the polymer were studied by means of X-ray microtomography. It was found that with an increase in debris velocity, a ductile-to-brittle transition occurred. However, fractures created by impacts at velocities above 1.7 km/s showed central impacts regions, which experienced the highest strain rate and were of ductile-type fracture, while the outer regions, which experienced a lower strain rate, failed through brittle cracking. A model explaining this phenomenon, based on the temperature gradient developed within the impacted region during collision, is presented.

Original languageEnglish
Pages (from-to)5539-5549
Number of pages11
JournalActa Materialia
Volume52
Issue number19
DOIs
StatePublished - 8 Nov 2004

Keywords

  • Fracture
  • Impact behavior
  • Polymers
  • Scanning electron microscopy (SEM)
  • Synchrotron radiation

Fingerprint

Dive into the research topics of 'The effect of simulated hypervelocity space debris on polymers'. Together they form a unique fingerprint.

Cite this