TY - JOUR
T1 - The Effect of Neuronal Activity on Glial Thrombin Generation
AU - Gera, Orna
AU - Shavit-Stein, Efrat
AU - Chapman, Joab
N1 - Publisher Copyright:
© 2019, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/4/15
Y1 - 2019/4/15
N2 - Thrombin through its receptor PAR-1 plays an important role in the peripheral nervous system. PAR-1 is located at the microvilli of Schwann cells at the node of Ranvier, and thrombin is generated by the coagulation system on these glial structures. In the present study, we examined the link between neuronal activity and modulation of thrombin generation by glial Schwann cells. Thrombin activity was assessed in sciatic nerves in reaction to high KCl as a model of neuronal activity. We demonstrated a significant transient effect of high KCL on thrombin activity (F(5, 20) = 42.65, p < 0.0001, by ANOVA) compared to normal KCl levels. Since the sciatic nerve includes components of axons and Schwann cell myelin sheath, we continued to investigate the effect of high KCl on a Schwannoma cell line as a model for nodal Schwann cell microvilli. We demonstrated a transient decrease in thrombin activity in response to high extracellular KCl (F(1, 18) = 9.56, p = 0.0063). The major neuronal inhibitor of thrombin is PN-1, and we therefore measured the effect of high KCL on PN-1 immunofluorescence intensity. We found significantly higher PN-1 staining intensity 3 min after the application of high KCL in comparison to cells exposed to high KCL for 7 min and to cells in regular KCL (F(2, 102) = 8.4737, p < 0.0004), and this effect may explain the changes in thrombin activity. The present results support an interaction between neuronal activity and the coagulation pathway as a novel mechanism for neuron-glia crosstalk at the node of Ranvier.
AB - Thrombin through its receptor PAR-1 plays an important role in the peripheral nervous system. PAR-1 is located at the microvilli of Schwann cells at the node of Ranvier, and thrombin is generated by the coagulation system on these glial structures. In the present study, we examined the link between neuronal activity and modulation of thrombin generation by glial Schwann cells. Thrombin activity was assessed in sciatic nerves in reaction to high KCl as a model of neuronal activity. We demonstrated a significant transient effect of high KCL on thrombin activity (F(5, 20) = 42.65, p < 0.0001, by ANOVA) compared to normal KCl levels. Since the sciatic nerve includes components of axons and Schwann cell myelin sheath, we continued to investigate the effect of high KCl on a Schwannoma cell line as a model for nodal Schwann cell microvilli. We demonstrated a transient decrease in thrombin activity in response to high extracellular KCl (F(1, 18) = 9.56, p = 0.0063). The major neuronal inhibitor of thrombin is PN-1, and we therefore measured the effect of high KCL on PN-1 immunofluorescence intensity. We found significantly higher PN-1 staining intensity 3 min after the application of high KCL in comparison to cells exposed to high KCL for 7 min and to cells in regular KCL (F(2, 102) = 8.4737, p < 0.0004), and this effect may explain the changes in thrombin activity. The present results support an interaction between neuronal activity and the coagulation pathway as a novel mechanism for neuron-glia crosstalk at the node of Ranvier.
KW - High KCl
KW - Schwannoma
KW - Sciatic nerve
KW - Thrombin
UR - http://www.scopus.com/inward/record.url?scp=85060587535&partnerID=8YFLogxK
U2 - 10.1007/s12031-019-01265-4
DO - 10.1007/s12031-019-01265-4
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 30684238
AN - SCOPUS:85060587535
SN - 0895-8696
VL - 67
SP - 589
EP - 594
JO - Journal of Molecular Neuroscience
JF - Journal of Molecular Neuroscience
IS - 4
ER -