TY - JOUR
T1 - The effect of electroporation type pulsed electric fields on DNA in aqueous solution
AU - Golberg, Alex
AU - Rubinsky, Boris
PY - 2010/8
Y1 - 2010/8
N2 - Electroporation is a physical phenomenon in which pulsed electric fields applied across a cell produce transient (reversible) or permanent (irreversible) permeabilization of the cell membrane. Irreversible electroporation is an important method of sterilization in the food industry and it is becoming an important minimally invasive tissue ablation technique in medicine. Motivated by recent observations of apoptosis like marker stains in irreversibly electroporated cells we performed a study on the effects of electroporation type electric pulses on the integrity of naked DNA in solution. Using gel electrophoresis analyses we show that pulses of the irreversible electroporation type have the ability to affect the naked DNA in solution. It is found that some electric parameters that lead to cell death by irreversible electroporation also cause changes in the naked DNA exposed to the same procedure. Our analysis tentatively suggests that some electroporation type electric pulses cause nicks in the DNA molecule. Therefore, it is possible that the mechanisms of cell death in irreversible electroporation also include damages to the DNA. However, this work did not investigate the possible effects of electroporation induced electrode corrosion byproducts, such as Al3+ ions on DNA integrity; which should be also studied in the future. In general, since electroporation phenomena based applications are widely used in medicine and biotechnology, the current study suggests that further research into the effects of electroporation type electric pulses on the DNA are warranted.
AB - Electroporation is a physical phenomenon in which pulsed electric fields applied across a cell produce transient (reversible) or permanent (irreversible) permeabilization of the cell membrane. Irreversible electroporation is an important method of sterilization in the food industry and it is becoming an important minimally invasive tissue ablation technique in medicine. Motivated by recent observations of apoptosis like marker stains in irreversibly electroporated cells we performed a study on the effects of electroporation type electric pulses on the integrity of naked DNA in solution. Using gel electrophoresis analyses we show that pulses of the irreversible electroporation type have the ability to affect the naked DNA in solution. It is found that some electric parameters that lead to cell death by irreversible electroporation also cause changes in the naked DNA exposed to the same procedure. Our analysis tentatively suggests that some electroporation type electric pulses cause nicks in the DNA molecule. Therefore, it is possible that the mechanisms of cell death in irreversible electroporation also include damages to the DNA. However, this work did not investigate the possible effects of electroporation induced electrode corrosion byproducts, such as Al3+ ions on DNA integrity; which should be also studied in the future. In general, since electroporation phenomena based applications are widely used in medicine and biotechnology, the current study suggests that further research into the effects of electroporation type electric pulses on the DNA are warranted.
KW - DNA damage
KW - Electroporation
KW - NTIRE
KW - Non thermal irreversible electroporation
UR - http://www.scopus.com/inward/record.url?scp=77956518121&partnerID=8YFLogxK
U2 - 10.1177/153303461000900412
DO - 10.1177/153303461000900412
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 20626208
AN - SCOPUS:77956518121
VL - 9
SP - 423
EP - 430
JO - Technology in Cancer Research and Treatment
JF - Technology in Cancer Research and Treatment
SN - 1533-0346
IS - 4
ER -