The dispersion of infinite constellations

Amir Ingber*, Ram Zamir, Meir Feder

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In the setting of a Gaussian channel without power constraints, proposed by Poltyrev, the codewords are points in an n-dimensional Euclidean space (an infinite constellation) and their optimal density is considered. Poltyrev's "capacity" is the highest achievable normalized log density (NLD) with vanishing error probability. This capacity as well as error exponents for this setting are known. In this work we consider the optimal NLD for a fixed, nonzero error probability, as a function of the codeword length (dimension) n. We show that as n grows, the gap to capacity is inversely proportional (up to the first order) to the square-root of n where the proportion constant is given by the inverse Q-function of the allowed error probability, times the square root of 1/2. In an analogy to similar result in channel coding, the dispersion of infinite constellations is 1/2 nat2 per channel use. We show that this optimal convergence rate can be achieved using lattices, therefore the result holds for the maximal error probability as well. Connections to the error exponent of the power constrained Gaussian channel and to the volume-to-noise ratio as a figure of merit are discussed.

Original languageEnglish
Title of host publication2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011
Pages1407-1411
Number of pages5
DOIs
StatePublished - 2011
Event2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011 - St. Petersburg, Russian Federation
Duration: 31 Jul 20115 Aug 2011

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8104

Conference

Conference2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011
Country/TerritoryRussian Federation
CitySt. Petersburg
Period31/07/115/08/11

Fingerprint

Dive into the research topics of 'The dispersion of infinite constellations'. Together they form a unique fingerprint.

Cite this