The Case of Missed Cancers: Applying AI as a Radiologist’s Safety Net

Michal Chorev*, Yoel Shoshan, Adam Spiro, Shaked Naor, Alon Hazan, Vesna Barros, Iuliana Weinstein, Esma Herzel, Varda Shalev, Michal Guindy, Michal Rosen-Zvi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We investigate the potential contribution of an AI system as a safety net application for radiologists in breast cancer screening. As a safety net, the AI alerts on cases suspected to be malignant which the radiologist did not recommend for a recall. We analyzed held-out data of 2,638 exams enriched with 90 missed cancers. In screening mammography settings, we show that a system alerting on 11 out of every 1,000 cases, could detect up to 10.7% of the radiologists’ missed cancers. Thus, significantly increasing radiologist’s sensitivity to 80.3%, while only slightly decreasing their specificity to 95.3%. Importantly, the safety net demonstrated a significant contribution to their performance even when radiologists utilized both mammography and ultrasound images. In those settings, it would have alerted 8.5 times per 1,000 cases, and detected 11.7% of the radiologists’ missed cancers. In an analysis of the missed cancers by an expert, we found that most of the cancers detected by the AI were visible post-hoc. Finally, we performed a reader study with five radiologists over 120 exams, 10 of which were originally missed cancers. The AI safety net was able to assist 3 out of the 5 radiologists in detecting missed cancers without raising any false alerts.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Pages220-229
Number of pages10
ISBN (Print)9783030597245
DOIs
StatePublished - 2020
Externally publishedYes
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: 4 Oct 20208 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12266 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Country/TerritoryPeru
CityLima
Period4/10/208/10/20

Keywords

  • Breast imaging
  • Computer-aided diagnosis
  • Deep learning

Fingerprint

Dive into the research topics of 'The Case of Missed Cancers: Applying AI as a Radiologist’s Safety Net'. Together they form a unique fingerprint.

Cite this