The 2018 biomembrane curvature and remodeling roadmap

Patricia Bassereau, Rui Jin, Tobias Baumgart, Markus Deserno, Rumiana Dimova, Vadim A. Frolov, Pavel V. Bashkirov, Helmut Grubmüller, Reinhard Jahn, H. Jelger Risselada, Ludger Johannes, Michael M. Kozlov, Reinhard Lipowsky, Thomas J. Pucadyil, Wade F. Zeno, Jeanne C. Stachowiak, Dimitrios Stamou, Artú Breuer, Line Lauritsen, Camille SimonCécile Sykes, Gregory A. Voth, Thomas R. Weikl

Research output: Contribution to journalReview articlepeer-review


The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo- and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area.

Original languageEnglish
Article number343001
JournalJournal of Physics D: Applied Physics
Issue number34
StatePublished - 20 Jul 2018


  • biomembrane
  • curvature
  • remodeling


Dive into the research topics of 'The 2018 biomembrane curvature and remodeling roadmap'. Together they form a unique fingerprint.

Cite this