TY - JOUR
T1 - The α-5 segment of Bacillus thuringiensis δ-endotoxin
T2 - In vitro activity, ion channel formation and molecular modelling
AU - Gazit, E.
AU - Bach, D.
AU - Kerr, I. D.
AU - Sansom, M. S.P.
AU - Chejanovsky, N.
AU - Shai, Y.
PY - 1994
Y1 - 1994
N2 - A peptide with a sequence corresponding to the highly conserved α-5 segment of the Cry δ-endotoxin family (amino acids 193-215 of Bacillus thuringiensis CryIIIA, was investigated with respect to its interaction with insect membranes, cytotoxicity in vitro towards Spodoptera frugiperda (Sf-9) cells, and its propensity to form ion channels in planar lipid membranes (PLMs). Selectively labelled analogues of α-5 at either the N-terminal amino acid or the ε-amine of its lysine, were used to monitor the interaction of the peptides with insect membranes. The fluorescent emission spectra of the 7-nitrobenz-2-oxa-1,3-diazole-4-yl (NBD)-labelled α-5 peptides displayed a blue shift upon binding to insect (Spodoptera littoralis) mid-gut membranes, reflecting the relocation of the fluorescent probes to an environment of increased apolarity, i.e. within the lipidic constituent of the membrane. Moreover, midgut membrane-bound NBD-labelled α-5 peptides were protected from enzymic proteolysis. Functional characterization of α-5 has revealed that it is cytotoxic to Sf-9 insect cells, and that it forms ion channels in PLMs with conductances ranging from 30 to 1000 pS. A proline-substituted analogue of α-5 is less cytolytic and slightly more exposed to enzymic digestion. Molecular modelling utilizing simulated annealing via molecular dynamics suggests that a transbilayer pore may be formed by α-5 monomers that assemble to form a left-handed coiled coil of approximately parallel helices. These findings further support a role for α-5 in the toxic mechanism of δ-endotoxins, and assign α-5 as one of the transmembrane helices which form the toxic pore. The suggested role is consistent with the recent finding that cleavage of CryIVB δ-endotoxin in a loop between α-5 and α-6 is highly important for its larvicidal activity.
AB - A peptide with a sequence corresponding to the highly conserved α-5 segment of the Cry δ-endotoxin family (amino acids 193-215 of Bacillus thuringiensis CryIIIA, was investigated with respect to its interaction with insect membranes, cytotoxicity in vitro towards Spodoptera frugiperda (Sf-9) cells, and its propensity to form ion channels in planar lipid membranes (PLMs). Selectively labelled analogues of α-5 at either the N-terminal amino acid or the ε-amine of its lysine, were used to monitor the interaction of the peptides with insect membranes. The fluorescent emission spectra of the 7-nitrobenz-2-oxa-1,3-diazole-4-yl (NBD)-labelled α-5 peptides displayed a blue shift upon binding to insect (Spodoptera littoralis) mid-gut membranes, reflecting the relocation of the fluorescent probes to an environment of increased apolarity, i.e. within the lipidic constituent of the membrane. Moreover, midgut membrane-bound NBD-labelled α-5 peptides were protected from enzymic proteolysis. Functional characterization of α-5 has revealed that it is cytotoxic to Sf-9 insect cells, and that it forms ion channels in PLMs with conductances ranging from 30 to 1000 pS. A proline-substituted analogue of α-5 is less cytolytic and slightly more exposed to enzymic digestion. Molecular modelling utilizing simulated annealing via molecular dynamics suggests that a transbilayer pore may be formed by α-5 monomers that assemble to form a left-handed coiled coil of approximately parallel helices. These findings further support a role for α-5 in the toxic mechanism of δ-endotoxins, and assign α-5 as one of the transmembrane helices which form the toxic pore. The suggested role is consistent with the recent finding that cleavage of CryIVB δ-endotoxin in a loop between α-5 and α-6 is highly important for its larvicidal activity.
UR - http://www.scopus.com/inward/record.url?scp=0028670565&partnerID=8YFLogxK
U2 - 10.1042/bj3040895
DO - 10.1042/bj3040895
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 7529493
AN - SCOPUS:0028670565
SN - 0264-6021
VL - 304
SP - 895
EP - 902
JO - Biochemical Journal
JF - Biochemical Journal
IS - 3
ER -