Text independent speaker recognition using speaker dependent word spotting

Hagai Aronowitz, David Burshtein, Amihood Amir

Research output: Contribution to conferencePaperpeer-review

12 Scopus citations

Abstract

This paper is motivated by the fact that text dependent speaker recognition is inherently more accurate than text independent speaker recognition. In this work we assign models to frequent words spoken by a speaker and spot them in a test call. In this way, text-dependent speaker recognition technology can be used for text independent tasks. The approach we take is to use DTW (Dynamic Time Warp) word spotting to find words in the test that resemble words in the train set. Results on the SPIDRE corpus show that using a combined DTW spotter based system and a GMM system improves performance significantly. For very low false acceptance rate (0.1%) misdetection was reduced from 32.2% to 23.3% (28% reduction). For low false acceptance rate (1%) misdetection was reduced from 28.9% to 21.1% (27% reduction).

Original languageEnglish
Pages1789-1792
Number of pages4
StatePublished - 2004
Event8th International Conference on Spoken Language Processing, ICSLP 2004 - Jeju, Jeju Island, Korea, Republic of
Duration: 4 Oct 20048 Oct 2004

Conference

Conference8th International Conference on Spoken Language Processing, ICSLP 2004
Country/TerritoryKorea, Republic of
CityJeju, Jeju Island
Period4/10/048/10/04

Fingerprint

Dive into the research topics of 'Text independent speaker recognition using speaker dependent word spotting'. Together they form a unique fingerprint.

Cite this