Testing problems with sublearning sample complexity

Michael Kearns, Dana Ron

Research output: Contribution to journalArticlepeer-review

Abstract

We study the problem of determining, for a class of functions H, whether an unknown target function f is contained in H or is `far' from any function in H. Thus, in contrast to problems of learning, where we must construct a good approximation to f in H on the basis of sample data, in problems of testing we are only required to determine the existence of a good approximation. Our main results demonstrate that, over the domain [0, 1]d for constant d, the number of examples required for testing grows only as O(s1/2+δ) (where δ is any small constant), for both decision trees of size s and a special class of neural networks with s hidden units. This is in contrast to the Ω(s) examples required for learning these same classes. Our tests are based on combinatorial constructions demonstrating that these classes can be approximated by small classes of coarse partitions of space and rely on repeated application of the well-known birthday paradox.

Original languageEnglish
Pages (from-to)428-456
Number of pages29
JournalJournal of Computer and System Sciences
Volume61
Issue number3
DOIs
StatePublished - Dec 2000
Event17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems - Seattle, WA, USA
Duration: 1 Jun 19984 Jun 1998

Fingerprint

Dive into the research topics of 'Testing problems with sublearning sample complexity'. Together they form a unique fingerprint.

Cite this