TY - JOUR

T1 - Testing hereditary properties of nonexpanding bounded-degree graphs

AU - Czumaj, Artur

AU - Shapira, Asaf

AU - Sohler, Christian

PY - 2009

Y1 - 2009

N2 - We study graph properties that are testable for bounded-degree graphs in time independent of the input size. Our goal is to distinguish between graphs having a predetermined graph property and graphs that are far from every graph having that property. It is well known that in the bounded-degree graph model (where two graphs are considered "far" if they differ in en edges for a positive constant ε), many graph properties cannot be tested even with a constant or even with a polylogarithmic number of queries. Therefore in this paper we focus our attention on testing graph properties for special classes of graphs. Specifically, we show that every hereditary graph property is testable with a constant number of queries provided that every sufficiently large induced subgraph of the input graph has poor expansion. This result implies that, for example, any hereditary property (e.g., k-colorability, H-freeness, etc.) is testable in the bounded-degree graph model for planar graphs, graphs with bounded genus, interval graphs, etc. No such results have been known before, and prior to our work, very few graph properties have been known to be testable with a constant number of queries for general graph classes in the bounded-degree graph model.

AB - We study graph properties that are testable for bounded-degree graphs in time independent of the input size. Our goal is to distinguish between graphs having a predetermined graph property and graphs that are far from every graph having that property. It is well known that in the bounded-degree graph model (where two graphs are considered "far" if they differ in en edges for a positive constant ε), many graph properties cannot be tested even with a constant or even with a polylogarithmic number of queries. Therefore in this paper we focus our attention on testing graph properties for special classes of graphs. Specifically, we show that every hereditary graph property is testable with a constant number of queries provided that every sufficiently large induced subgraph of the input graph has poor expansion. This result implies that, for example, any hereditary property (e.g., k-colorability, H-freeness, etc.) is testable in the bounded-degree graph model for planar graphs, graphs with bounded genus, interval graphs, etc. No such results have been known before, and prior to our work, very few graph properties have been known to be testable with a constant number of queries for general graph classes in the bounded-degree graph model.

KW - Approximation algorithms

KW - Bounded-degree graphs

KW - Hereditary graph properties

KW - Nonexpanding graphs

KW - Planar graphs

KW - Property testing

KW - Randomized algorithms

UR - http://www.scopus.com/inward/record.url?scp=65949087650&partnerID=8YFLogxK

U2 - 10.1137/070681831

DO - 10.1137/070681831

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:65949087650

SN - 0097-5397

VL - 38

SP - 2499

EP - 2510

JO - SIAM Journal on Computing

JF - SIAM Journal on Computing

IS - 6

ER -