Temporally flickering nanoparticles for compound cellular imaging and super resolution

Tali Ilovitsh, Yossef Danan, Rinat Meir, Amihai Meiri, Zeev Zalevsky

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work presents the use of flickering nanoparticles for imaging biological samples. The method has high noise immunity, and it enables the detection of overlapping types of GNPs, at significantly sub-diffraction distances, making it attractive for super resolving localization microscopy techniques. The method utilizes a lock-in technique at which the imaging of the sample is done using a time-modulated laser beam that match the number of the types of gold nanoparticles (GNPs) that label a given sample, and resulting in the excitation of the temporal flickering of the scattered light at known temporal frequencies. The final image where the GNPs are spatially separated is obtained using post processing where the proper spectral components corresponding to the different modulation frequencies are extracted. This allows the simultaneous super resolved imaging of multiple types of GNPs that label targets of interest within biological samples. Additionally applying the post-processing algorithm of the K-factor image decomposition algorithm can further improve the performance of the proposed approach.

Original languageEnglish
Title of host publicationNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII
EditorsAlexander N. Cartwright, Dan V. Nicolau
PublisherSPIE
ISBN (Electronic)9781628419559
DOIs
StatePublished - 2016
Externally publishedYes
EventNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII - San Francisco, United States
Duration: 15 Feb 201617 Feb 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9721
ISSN (Print)1605-7422

Conference

ConferenceNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII
Country/TerritoryUnited States
CitySan Francisco
Period15/02/1617/02/16

Keywords

  • Cellular imaging
  • Image processing
  • Superresolution
  • gold nanoparticle
  • lock-in amplification
  • signal to noise ratio

Fingerprint

Dive into the research topics of 'Temporally flickering nanoparticles for compound cellular imaging and super resolution'. Together they form a unique fingerprint.

Cite this