Teaching Structured Vision & Language Concepts to Vision & Language Models

Sivan Doveh, Assaf Arbelle, Sivan Harary, Eli Schwartz, Roei Herzig, Raja Giryes, Rogerio Feris, Rameswar Panda, Shimon Ullman, Leonid Karlinsky

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Vision and Language (VL) models have demonstrated remarkable zero-shot performance in a variety of tasks. However, some aspects of complex language understanding still remain a challenge. We introduce the collective notion of Structured Vision & Language Concepts (SVLC) which includes object attributes, relations, and states which are present in the text and visible in the image. Recent studies have shown that even the best VL models struggle with SVLC. A possible way of fixing this issue is by collecting dedicated datasets for teaching each SVLC type, yet this might be expensive and time-consuming. Instead, we propose a more elegant data-driven approach for enhancing VL models' understanding of SVLCs that makes more effective use of existing VL pre-training datasets and does not require any additional data. While automatic understanding of image structure still remains largely unsolved, language structure is much better modeled and understood, allowing for its effective utilization in teaching VL models. In this paper, we propose various techniques based on language structure understanding that can be used to manipulate the textual part of off-the-shelf paired VL datasets. VL models trained with the updated data exhibit a significant improvement of up to 15% in their SVLC understanding with only a mild degradation in their zero-shot capabilities both when training from scratch or fine-tuning a pre-trained model. Our code and pretrained models are available at: https://github.com/SivanDoveh/TSVLC

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages2657-2668
Number of pages12
ISBN (Electronic)9798350301298
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Funding

FundersFunder number
ERC-StG75749
Defense Advanced Research Projects AgencyFA8750-19-C-1001
Council for Higher Education

    Keywords

    • Multi-modal learning

    Fingerprint

    Dive into the research topics of 'Teaching Structured Vision & Language Concepts to Vision & Language Models'. Together they form a unique fingerprint.

    Cite this