Targeted tDCS Mitigates Dual-Task Costs to Gait and Balance in Older Adults

Junhong Zhou, Brad Manor, Wanting Yu, On Yee Lo, Natalia Gouskova, Ricardo Salvador, Racheli Katz, Pablo Cornejo Thumm, Marina Brozgol, Giulio Ruffini, Alvaro Pascual-Leone, Lewis A. Lipsitz, Jeffrey M. Hausdorff

Research output: Contribution to journalArticlepeer-review

Abstract

Objective: Among older adults, the ability to stand or walk while performing cognitive tasks (ie, dual-tasking) requires coordinated activation of several brain networks. In this multicenter, double-blinded, randomized, and sham-controlled study, we examined the effects of modulating the excitability of the left dorsolateral prefrontal cortex (L-DLPFC) and the primary sensorimotor cortex (SM1) on dual-task performance “costs” to standing and walking. Methods: Fifty-seven older adults without overt illness or disease completed 4 separate study visits during which they received 20 minutes of transcranial direct current stimulation (tDCS) optimized to facilitate the excitability of the L-DLPFC and SM1 simultaneously, or each region separately, or neither region (sham). Before and immediately after stimulation, participants completed a dual-task paradigm in which they were asked to stand and walk with and without concurrent performance of a serial-subtraction task. Results: tDCS simultaneously targeting the L-DLPFC and SM1, as well as tDCS targeting the L-DLPFC alone, mitigated dual-task costs to standing and walking to a greater extent than tDCS targeting SM1 alone or sham (p < 0.02). Blinding efficacy was excellent and participant subjective belief in the type of stimulation received (real or sham) did not contribute to the observed functional benefits of tDCS. Interpretation: These results demonstrate that in older adults, dual-task decrements may be amenable to change and implicate L-DPFC excitability as a modifiable component of the control system that enables dual-task standing and walking. tDCS may be used to improve resilience and the ability of older results to walk and stand under challenging conditions, potentially enhancing everyday functioning and reducing fall risks. ANN NEUROL 2021;90:428–439.

Original languageEnglish
Pages (from-to)428-439
Number of pages12
JournalAnnals of Neurology
Volume90
Issue number3
DOIs
StatePublished - Sep 2021

Fingerprint

Dive into the research topics of 'Targeted tDCS Mitigates Dual-Task Costs to Gait and Balance in Older Adults'. Together they form a unique fingerprint.

Cite this