@article{28b004f4984645e1a2a6772627b79c9a,
title = "Target identification among known drugs by deep learning from heterogeneous networks",
abstract = "Without foreknowledge of the complete drug target information, development of promising and affordable approaches for effective treatment of human diseases is challenging. Here, we develop deepDTnet, a deep learning methodology for new target identification and drug repurposing in a heterogeneous drug-gene-disease network embedding 15 types of chemical, genomic, phenotypic, and cellular network profiles. Trained on 732 U.S. Food and Drug Administration-Approved small molecule drugs, deepDTnet shows high accuracy (the area under the receiver operating characteristic curve = 0.963) in identifying novel molecular targets for known drugs, outperforming previously published state-of-The-Art methodologies. We then experimentally validate that deepDTnet-predicted topotecan (an approved topoisomerase inhibitor) is a new, direct inhibitor (IC50 = 0.43 μM) of human retinoic-Acid-receptor-related orphan receptor-gamma t (ROR-γt). Furthermore, by specifically targeting ROR-γt, topotecan reveals a potential therapeutic effect in a mouse model of multiple sclerosis. In summary, deepDTnet offers a powerful network-based deep learning methodology for target identification to accelerate drug repurposing and minimize the translational gap in drug development.",
author = "Xiangxiang Zeng and Siyi Zhu and Weiqiang Lu and Zehui Liu and Jin Huang and Yadi Zhou and Jiansong Fang and Yin Huang and Huimin Guo and Lang Li and Trapp, {Bruce D.} and Ruth Nussinov and Charis Eng and Joseph Loscalzo and Feixiong Cheng",
note = "Publisher Copyright: {\textcopyright} The Royal Society of Chemistry.",
year = "2020",
month = feb,
day = "21",
doi = "10.1039/c9sc04336e",
language = "אנגלית",
volume = "11",
pages = "1775--1797",
journal = "Chemical Science",
issn = "2041-6520",
publisher = "Royal Society of Chemistry",
number = "7",
}