TY - JOUR

T1 - Taming of preasymptotic small x evolution within resummation framework

AU - Deak, Michal

AU - Frankfurt, Leonid

AU - Staśto, Anna M.

AU - Strikman, Mark

N1 - Publisher Copyright:
© 2020, The Author(s).

PY - 2020/4/1

Y1 - 2020/4/1

N2 - It is well understood that the leading logarithmic approximation for the amplitudes of high energy processes is insufficient and that the next-to-leading logarithmic effects are very large and lead to instability of the solution. The resummation at low x, which includes kinematical constraints and other corrections leads to stable result. Using previously established resummation procedure we study in detail the preasymptotic effects which occur in the solution to the resummed BFKL equation when the energy is not very large. We find that in addition to the well known reduction of the intercept, which governs the energy dependence of the gluon Green’s function, resummation leads to the delay of the onset of its small x growth. Moreover the gluon Green’s function develops a dip or a plateau in wide range of rapidities, which increases for large scales. The preasymptotic region in the gluon Green’s function extends to about 8 units in rapidity for the transverse scales of the order of 30–100 GeV. To visualize the expected behavior of physical processes with two equal hard scales we calculate the cross section of the process γ∗+ γ∗→ X to be probed at future very high-energy electron-positron colliders. We find that at γ∗γ∗ energies below 100GeV the BFKL Pomeron leads to smaller value of the cross section than the Born approximation, and only starts to dominate at energies about 100GeV. This pattern is significantly different from the one which we find using LLx approximation. We also analyze the transverse momentum contributions to the cross section for different virtualities of the photons and find that the dominant contributions to the integral over the transverse momenta comes from lower values than the the external scales in the process under consideration.

AB - It is well understood that the leading logarithmic approximation for the amplitudes of high energy processes is insufficient and that the next-to-leading logarithmic effects are very large and lead to instability of the solution. The resummation at low x, which includes kinematical constraints and other corrections leads to stable result. Using previously established resummation procedure we study in detail the preasymptotic effects which occur in the solution to the resummed BFKL equation when the energy is not very large. We find that in addition to the well known reduction of the intercept, which governs the energy dependence of the gluon Green’s function, resummation leads to the delay of the onset of its small x growth. Moreover the gluon Green’s function develops a dip or a plateau in wide range of rapidities, which increases for large scales. The preasymptotic region in the gluon Green’s function extends to about 8 units in rapidity for the transverse scales of the order of 30–100 GeV. To visualize the expected behavior of physical processes with two equal hard scales we calculate the cross section of the process γ∗+ γ∗→ X to be probed at future very high-energy electron-positron colliders. We find that at γ∗γ∗ energies below 100GeV the BFKL Pomeron leads to smaller value of the cross section than the Born approximation, and only starts to dominate at energies about 100GeV. This pattern is significantly different from the one which we find using LLx approximation. We also analyze the transverse momentum contributions to the cross section for different virtualities of the photons and find that the dominant contributions to the integral over the transverse momenta comes from lower values than the the external scales in the process under consideration.

UR - http://www.scopus.com/inward/record.url?scp=85083346182&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-020-7861-6

DO - 10.1140/epjc/s10052-020-7861-6

M3 - מאמר

AN - SCOPUS:85083346182

VL - 80

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 4

M1 - 315

ER -