Tail-invariant measures for some suspension semiflows

Jon Aaronson*, Omri Sarig, Rita Solomyak

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


We consider suspension semiflows over abelian extensions of one-sided mixing subshifts of finite type. Although these are not uniquely ergodic, we identify (in the "ergodic" case) all tail-invariant, locally finite measures which are quasi-invariant for the semiflow.

Original languageEnglish
Pages (from-to)725-735
Number of pages11
JournalDiscrete and Continuous Dynamical Systems
Issue number3
StatePublished - 2002


  • Aperiodicity
  • Equivalence relations
  • Horocycle flow
  • Infinite measures
  • Non-arithmeticity
  • Semi-flows
  • Skew-products
  • Tail-invariance
  • Unique ergodicity


Dive into the research topics of 'Tail-invariant measures for some suspension semiflows'. Together they form a unique fingerprint.

Cite this