Tactical grade micro gyroscope with dual capcitive/optical sensing

R. Maimon*, O. Lahav, Y. Gerson, O. Zohar, H. Berko, S. Krylov

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper introduces a design, fabrication, integration and characterization, of a novel high-grade single axis tuning fork gyroscope (TFG), based on dual detection techniques - capacitive and optic (DDT-CO). This is the first time that the capacitive and optical sensing approaches are used, for the registering of the in-plane drive and in-plane sense mode responses. The two techniques are combined in the same fully functional vacuum packaged device with integrated electronics. We present the results of the rate-table performance study, and the sensor's main figures of merit. We show that the use of dual sensing significantly simplifies the silicon on insulator (SOI) fabrication process, allowing the achievement of tactical grade performance, including angular random walk (ARW) less than 0.15 °/√hr and in-run bias instability (BI) less than 2 °/hr.

Original languageEnglish
Title of host publicationIEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013
Pages637-640
Number of pages4
DOIs
StatePublished - 2013
EventIEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013 - Taipei, Taiwan, Province of China
Duration: 20 Jan 201324 Jan 2013

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
ISSN (Print)1084-6999

Conference

ConferenceIEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013
Country/TerritoryTaiwan, Province of China
CityTaipei
Period20/01/1324/01/13

Fingerprint

Dive into the research topics of 'Tactical grade micro gyroscope with dual capcitive/optical sensing'. Together they form a unique fingerprint.

Cite this