TY - JOUR
T1 - Symplectic embeddings of the p -sum of two discs
AU - Ostrover, Yaron
AU - Ramos, Vinicius G.B.
N1 - Publisher Copyright:
© 2021 World Scientific Publishing Company.
PY - 2021
Y1 - 2021
N2 - In this paper, we study symplectic embedding questions for the p-sum of two discs in 4, when 1 ≤ p ≤∞. In particular, we compute the symplectic inner and outer radii in these cases, and show how different kinds of embedding rigidity and flexibility phenomena appear as a function of the parameter p.
AB - In this paper, we study symplectic embedding questions for the p-sum of two discs in 4, when 1 ≤ p ≤∞. In particular, we compute the symplectic inner and outer radii in these cases, and show how different kinds of embedding rigidity and flexibility phenomena appear as a function of the parameter p.
KW - Symplectic capacities
KW - integrable Hamiltonian systems
KW - symplectic embeddings
KW - toric domains
UR - http://www.scopus.com/inward/record.url?scp=85102735298&partnerID=8YFLogxK
U2 - 10.1142/S1793525321500242
DO - 10.1142/S1793525321500242
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85102735298
JO - Journal of Topology and Analysis
JF - Journal of Topology and Analysis
SN - 1793-5253
ER -