TY - JOUR
T1 - Symmetry of Bioinspired Short Peptide Nanostructures and Their Basic Physical Properties
AU - Handelman, Amir
AU - Shalev, Gil
AU - Rosenman, Gil
N1 - Publisher Copyright:
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Supramolecular bioinspired peptide nanostructures are considered as a new frontier in materials science and engineering. The nano-crystalline packing of various peptide nanostructures, and especially those lacking a center of symmetry at the nanoscale, give rise to exceptional physical properties. Specifically, native aromatic diphenylalanine (FF) and aliphatic dileucine (LL) based nanotubes, which are related to hexagonal and orthorhombic non-centrosymmetric crystalline groups respectively, exhibit fundamental physical phenomena, such as piezoelectricity and second harmonic generation (SHG). This review covers our latest findings on the physical properties of FF and LL nanostructures. We show that heat treatment at the temperature range of 140-180 C induces irreversible phase transition in FF and LL nanotubes, wherein all their physical properties and structure at all levels (molecular, electronic, optical, space symmetry, morphology, wettability) change. Using high resolution microscopy tools, based on Kelvin probe force microscopy (KPFM), piezoresponse force microscopy (PFM), and SHG, as well as Raman spectroscopy, we demonstrate that the phase-transition phenomena in FF and LL nanotubes leads to full reconstruction and reassembling of native open-end nanotubes into new fiber-like structures, followed by deep variation of non-centrosymmetric to centrosymmetric space symmetry. As a result, the newly generated centrosymmetric phase in FF and LL nanostructures demonstrates neither piezoelectric effect nor nonlinear optical activity.
AB - Supramolecular bioinspired peptide nanostructures are considered as a new frontier in materials science and engineering. The nano-crystalline packing of various peptide nanostructures, and especially those lacking a center of symmetry at the nanoscale, give rise to exceptional physical properties. Specifically, native aromatic diphenylalanine (FF) and aliphatic dileucine (LL) based nanotubes, which are related to hexagonal and orthorhombic non-centrosymmetric crystalline groups respectively, exhibit fundamental physical phenomena, such as piezoelectricity and second harmonic generation (SHG). This review covers our latest findings on the physical properties of FF and LL nanostructures. We show that heat treatment at the temperature range of 140-180 C induces irreversible phase transition in FF and LL nanotubes, wherein all their physical properties and structure at all levels (molecular, electronic, optical, space symmetry, morphology, wettability) change. Using high resolution microscopy tools, based on Kelvin probe force microscopy (KPFM), piezoresponse force microscopy (PFM), and SHG, as well as Raman spectroscopy, we demonstrate that the phase-transition phenomena in FF and LL nanotubes leads to full reconstruction and reassembling of native open-end nanotubes into new fiber-like structures, followed by deep variation of non-centrosymmetric to centrosymmetric space symmetry. As a result, the newly generated centrosymmetric phase in FF and LL nanostructures demonstrates neither piezoelectric effect nor nonlinear optical activity.
KW - nanostructures
KW - nanotube-to-nanofiber phase transition
KW - peptides
KW - piezoelectricity
KW - second harmonic generation
UR - http://www.scopus.com/inward/record.url?scp=84947040247&partnerID=8YFLogxK
U2 - 10.1002/ijch.201400164
DO - 10.1002/ijch.201400164
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:84947040247
SN - 0021-2148
VL - 55
SP - 637
EP - 644
JO - Israel Journal of Chemistry
JF - Israel Journal of Chemistry
IS - 6
ER -