TY - JOUR
T1 - Symmetry energy of nucleonic matter with tensor correlations
AU - Hen, Or
AU - Li, Bao An
AU - Guo, Wen Jun
AU - Weinstein, L. B.
AU - Piasetzky, Eli
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/2/5
Y1 - 2015/2/5
N2 - The nuclear symmetry energy (Esym(ρ)) is a vital ingredient of our understanding of many processes, from heavy-ion collisions to neutron stars structure. While the total nuclear symmetry energy at nuclear saturation density (ρ0) is relatively well determined, its value at supranuclear densities is not. The latter can be better constrained by separately examining its kinetic and potential terms and their density dependencies. The kinetic term of the symmetry energy, Esymkin(ρ0), equals the difference in the per-nucleon kinetic energy between pure neutron matter (PNM) and symmetric nuclear matter (SNM), often calculated using a simple Fermi gas model. However, experiments show that tensor force induced short-range correlations (SRC) between proton-neutron pairs shift nucleons to high momentum in SNM, where there are equal numbers of neutrons and protons, but have almost no effect in PNM. We present an approximate analytical expression for Esymkin(ρ0) of correlated nucleonic matter. In our model, Esymkin(ρ0)=-10 MeV, which differs significantly from +12.5 MeV for the widely-used free Fermi gas model. This result is consistent with our analysis of recent data on the free proton-to-neutron ratios measured in intermediate energy nucleus-nucleus collisions as well as with microscopic many-body calculations, and previous phenomenological extractions. We then use our calculated Esymkin(ρ) in combination with the known total symmetry energy and its density dependence at saturation density to constrain the value and density dependence of the potential part and to extrapolate the total symmetry energy to supranuclear densities.
AB - The nuclear symmetry energy (Esym(ρ)) is a vital ingredient of our understanding of many processes, from heavy-ion collisions to neutron stars structure. While the total nuclear symmetry energy at nuclear saturation density (ρ0) is relatively well determined, its value at supranuclear densities is not. The latter can be better constrained by separately examining its kinetic and potential terms and their density dependencies. The kinetic term of the symmetry energy, Esymkin(ρ0), equals the difference in the per-nucleon kinetic energy between pure neutron matter (PNM) and symmetric nuclear matter (SNM), often calculated using a simple Fermi gas model. However, experiments show that tensor force induced short-range correlations (SRC) between proton-neutron pairs shift nucleons to high momentum in SNM, where there are equal numbers of neutrons and protons, but have almost no effect in PNM. We present an approximate analytical expression for Esymkin(ρ0) of correlated nucleonic matter. In our model, Esymkin(ρ0)=-10 MeV, which differs significantly from +12.5 MeV for the widely-used free Fermi gas model. This result is consistent with our analysis of recent data on the free proton-to-neutron ratios measured in intermediate energy nucleus-nucleus collisions as well as with microscopic many-body calculations, and previous phenomenological extractions. We then use our calculated Esymkin(ρ) in combination with the known total symmetry energy and its density dependence at saturation density to constrain the value and density dependence of the potential part and to extrapolate the total symmetry energy to supranuclear densities.
UR - http://www.scopus.com/inward/record.url?scp=84922308851&partnerID=8YFLogxK
U2 - 10.1103/PhysRevC.91.025803
DO - 10.1103/PhysRevC.91.025803
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84922308851
SN - 0556-2813
VL - 91
JO - Physical Review C - Nuclear Physics
JF - Physical Review C - Nuclear Physics
IS - 2
M1 - 025803
ER -