TY - JOUR

T1 - Switching reconstruction and diophantine equations

AU - Krasikov, I.

AU - Roditty, Y.

PY - 1992/3

Y1 - 1992/3

N2 - Based on a result of R. P. Stanley (J. Combin. Theory Ser. B 38, 1985, 132-138) we show that for each s ≥ 4 there exists an integer Ns such that any graph with n > Ns vertices is reconstructible from the multiset of graphs obtained by switching of vertex subsets with s vertices, provided n ≠ 0 (mod 4) if s is odd. We also establish an analog of P. J. Kelly's lemma (Pacific J. Math., 1957, 961-968) for the above s-switching reconstruction problem.

AB - Based on a result of R. P. Stanley (J. Combin. Theory Ser. B 38, 1985, 132-138) we show that for each s ≥ 4 there exists an integer Ns such that any graph with n > Ns vertices is reconstructible from the multiset of graphs obtained by switching of vertex subsets with s vertices, provided n ≠ 0 (mod 4) if s is odd. We also establish an analog of P. J. Kelly's lemma (Pacific J. Math., 1957, 961-968) for the above s-switching reconstruction problem.

UR - http://www.scopus.com/inward/record.url?scp=38249015457&partnerID=8YFLogxK

U2 - 10.1016/0095-8956(92)90050-8

DO - 10.1016/0095-8956(92)90050-8

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:38249015457

SN - 0095-8956

VL - 54

SP - 189

EP - 195

JO - Journal of Combinatorial Theory. Series B

JF - Journal of Combinatorial Theory. Series B

IS - 2

ER -