TY - JOUR
T1 - Supersymmetric resonant dark matter
T2 - A thermal model for the AMS-02 positron excess
AU - Bai, Yang
AU - Berger, Joshua
AU - Lu, Sida
N1 - Publisher Copyright:
© 2018 authors. Published by the American Physical Society.
PY - 2018/6/8
Y1 - 2018/6/8
N2 - We construct a thermal dark matter model with annihilation mediated by a resonance to explain the positron excess observed by PAMELA, Fermi-LAT and AMS-02, while satisfying constraints from cosmic microwave background (CMB) measurements. The challenging requirement is that the resonance has twice the dark matter mass to one part in a million. We achieve this by introducing an SU(3)f dark flavor symmetry that is spontaneously broken to SU(2)f×U(1)f. The resonance is the heaviest state in the dark matter flavor multiplet, and the required mass relation is protected by the vacuum structure and supersymmetry from radiative corrections. The pseudo-Nambu-Goldstone bosons (PNGBs) from the dark flavor symmetry breaking can be slightly lighter than one GeV and dominantly decay into two muons just from kinematics, with subsequent decay into positrons. The PNGBs are produced in resonant dark matter semiannihilation, where two dark matter particles annihilate into an anti-dark matter particle and a PNGB. The dark matter mass in our model is constrained to be below around 1.9 TeV from fitting thermal relic abundance, AMS-02 data and CMB constraints. The superpartners of Standard Model (SM) particles can cascade decay into a light PNGB along with SM particles, yielding a correlated signal of this model at colliders. One of the interesting signatures is a resonance of a SM Higgs boson plus two collimated muons, which has superb discovery potential at LHC Run 2.
AB - We construct a thermal dark matter model with annihilation mediated by a resonance to explain the positron excess observed by PAMELA, Fermi-LAT and AMS-02, while satisfying constraints from cosmic microwave background (CMB) measurements. The challenging requirement is that the resonance has twice the dark matter mass to one part in a million. We achieve this by introducing an SU(3)f dark flavor symmetry that is spontaneously broken to SU(2)f×U(1)f. The resonance is the heaviest state in the dark matter flavor multiplet, and the required mass relation is protected by the vacuum structure and supersymmetry from radiative corrections. The pseudo-Nambu-Goldstone bosons (PNGBs) from the dark flavor symmetry breaking can be slightly lighter than one GeV and dominantly decay into two muons just from kinematics, with subsequent decay into positrons. The PNGBs are produced in resonant dark matter semiannihilation, where two dark matter particles annihilate into an anti-dark matter particle and a PNGB. The dark matter mass in our model is constrained to be below around 1.9 TeV from fitting thermal relic abundance, AMS-02 data and CMB constraints. The superpartners of Standard Model (SM) particles can cascade decay into a light PNGB along with SM particles, yielding a correlated signal of this model at colliders. One of the interesting signatures is a resonance of a SM Higgs boson plus two collimated muons, which has superb discovery potential at LHC Run 2.
UR - http://www.scopus.com/inward/record.url?scp=85049745528&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.97.115012
DO - 10.1103/PhysRevD.97.115012
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85049745528
SN - 2470-0010
VL - 97
JO - Physical Review D
JF - Physical Review D
IS - 11
M1 - 115012
ER -