Superconducting antenna concept for gravitational waves

A. Gulian*, J. Foreman, V. Nikoghosyan, S. Nussinov, L. Sica, J. Tollaksen

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

The most advanced contemporary efforts and concepts for registering gravitational waves are focused on measuring tiny deviations in large arm (kilometers in case of LIGO and thousands of kilometers in case of LISA) interferometers via photons. In this report we discuss a concept for the detection of gravitational waves using an antenna comprised of superconducting electrons (Cooper pairs) moving in an ionic lattice. The major challenge in this approach is that the tidal action of the gravitational waves is extremely weak compared with electromagnetic forces. Any motion caused by gravitational waves, which violates charge neutrality, will be impeded by Coulomb forces acting on the charge carriers (Coulomb blockade) in metals, as well as in superconductors. We discuss a design, which avoids the effects of Coulomb blockade. It exploits two different superconducting materials used in a form of thin wires -"spaghetti." The spaghetti will have a diameter comparable to the London penetration depth, and length of about 1-10 meters. To achieve competitive sensitivity, the antenna would require billions of spaghettis, which calls for a challenging manufacturing technology. If successfully materialized, the response of the antenna to the known highly periodic sources of gravitational radiation, such as the Pulsar in Crab Nebula will result in an output current, detectable by superconducting electronics. The antenna will require deep (0.3K) cryogenic cooling and magnetic shielding. This design may be a viable successor to LISA and LIGO concepts, having the prospect of higher sensitivity, much smaller size and directional selectivity. This concept of compact antenna may benefit also terrestrial gradiometry.

Original languageEnglish
Pages (from-to)1212-1217
Number of pages6
JournalPhysics Procedia
Volume67
DOIs
StatePublished - 2015
Event25th International Cryogenic Engineering Conference and International Cryogenic Materials Conference, ICEC/ICMC 2014 - Enschede, Netherlands
Duration: 7 Jul 201411 Jul 2014

Keywords

  • detectors
  • gravitational waves
  • superconducting electronics

Fingerprint

Dive into the research topics of 'Superconducting antenna concept for gravitational waves'. Together they form a unique fingerprint.

Cite this