Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation

Charles Wyatt Shields, Koohee Han, Fuduo Ma, Touvia Miloh, Gilad Yossifon, Orlin D. Velev

Research output: Contribution to journalArticlepeer-review

Abstract

A class of supercolloidal particles that controllably spin about their central axis in AC electric fields is reported. The rational design of these “microspinners” enables their rotation in a switchable manner, which gives rise to several interesting and programmable behaviors. It is shown that due to their complex shape and discrete metallic patches on their surfaces, these microspinners convert electrical energy into active motion via the interplay of four mechanisms at different electric field frequency ranges. These mechanisms of rotation include (in order of increasing frequency): electrohydrodynamic flows, reversed electrohydrodynamic flows, induced charge electrophoresis, and self-dielectrophoresis. As the primary mechanism powering their motion transitions from one phenomenon to the next, these microspinners display three directional spin inversions (i.e., from clockwise to anticlockwise, or vice versa). To understand the mechanisms involved, this experimental study is coupled with scaling analyses. Due to their frequency-switchable rotation, these microspinners have potential for applications such as interlocking gears in colloidal micromachines. Moreover, the principles used to power their switchable motion can be extended to design other types of supercolloidal particles that harvest electrical energy for motion via multiple electrokinetic mechanisms.

Original languageEnglish
Article number1803465
JournalAdvanced Functional Materials
Volume28
Issue number35
DOIs
StatePublished - 29 Aug 2018

Keywords

  • electrically powered particles
  • engineered active particles
  • particle rotors
  • self-propelling particles
  • switchable rotation

Fingerprint

Dive into the research topics of 'Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation'. Together they form a unique fingerprint.

Cite this