TY - GEN
T1 - Super-Ego
T2 - 5th ACM International Workshop on Context-Awareness for Self-Managing Systems, CASEMANS 2011
AU - Toch, Eran
PY - 2011
Y1 - 2011
N2 - Context-awareness enables applications to better streamline and personalize their service according to the current situation of the user. However, the user's information used by context-aware applications, such as the user's current location, is inherently private and sensitive. Using this information without proper control by the user can lead to privacy risks and might harm the trust users have in the context-aware application. To address this tradeoff between the effectiveness and privacy, we present Super-Ego, a framework for at-hoc management of access to location information in ubiquitous environment. Using this framework, we model and evaluate different decision strategies for managing mobile application's access to location context. The strategies we test are based on automatic algorithms that use knowledge about historical disclosure of locations by large number of users, with the optional delegation of some of the decisions to the user. We evaluate the system empirically, using people's detailed location trails from public resources, augmented with simulated data about sharing behavior. Our results reflect on an interesting tradeoff between automation and accuracy, which can enable the design of efficient and usable approaches to privacy-sensitive context-aware applications.
AB - Context-awareness enables applications to better streamline and personalize their service according to the current situation of the user. However, the user's information used by context-aware applications, such as the user's current location, is inherently private and sensitive. Using this information without proper control by the user can lead to privacy risks and might harm the trust users have in the context-aware application. To address this tradeoff between the effectiveness and privacy, we present Super-Ego, a framework for at-hoc management of access to location information in ubiquitous environment. Using this framework, we model and evaluate different decision strategies for managing mobile application's access to location context. The strategies we test are based on automatic algorithms that use knowledge about historical disclosure of locations by large number of users, with the optional delegation of some of the decisions to the user. We evaluate the system empirically, using people's detailed location trails from public resources, augmented with simulated data about sharing behavior. Our results reflect on an interesting tradeoff between automation and accuracy, which can enable the design of efficient and usable approaches to privacy-sensitive context-aware applications.
KW - Autonomous systems
KW - Context-awareness
KW - Privacy
KW - Usability
UR - http://www.scopus.com/inward/record.url?scp=80053620992&partnerID=8YFLogxK
U2 - 10.1145/2036146.2036151
DO - 10.1145/2036146.2036151
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:80053620992
SN - 9781450308779
T3 - ACM International Conference Proceeding Series
SP - 24
EP - 32
BT - CASEMANS 2011 - 5th ACM International Workshop on Context-Awareness for Self-Managing Systems
Y2 - 17 September 2011 through 17 September 2011
ER -