TY - JOUR
T1 - Sulfatides are endogenous ligands for the TLR4–MD-2 complex
AU - Su, Lijing
AU - Athamna, Muhammad
AU - Wang, Ying
AU - Wang, Junmei
AU - Freudenberg, Marina
AU - Yue, Tao
AU - Wang, Jianhui
AU - Moresco, Eva Marie Y.
AU - He, Haoming
AU - Zor, Tsaffrir
AU - Beutler, Bruce
N1 - Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.
PY - 2021/7/27
Y1 - 2021/7/27
N2 - Many endogenous molecules, mostly proteins, purportedly activate the Toll-like receptor 4 (TLR4)–myeloid differentiation factor-2 (MD-2) complex, the innate immune receptor for lipopolysaccharide (LPS) derived from gram-negative bacteria. However, there is no structural evidence supporting direct TLR4–MD-2 activation by endogenous ligands. Sulfatides (3-O-sulfogalactosylceramides) are natural, abundant sulfated glycolipids that have variously been shown to initiate or suppress inflammatory responses. We show here that short fatty acid (FA) chain sulfatides directly activate mouse TLR4–MD-2 independent of CD14, trigger MyD88- and TRIF-dependent signaling, and stimulate tumor necrosis factor α (TNFα) and type I interferon (IFN) production in mouse macrophages. In contrast to the agonist activity toward the mouse receptor, the tested sulfatides antagonize TLR4–MD-2 activation by LPS in human macrophage-like cells. The agonistic and antagonistic activities of sulfatides require the presence of the sulfate group and are inversely related to the FA chain length. The crystal structure of mouse TLR4–MD-2 in complex with C16-sulfatide revealed that three C16-sulfatide molecules bound to the MD-2 hydrophobic pocket and induced an active dimer conformation of the receptor complex similar to that induced by LPS or lipid A. The three C16-sulfatide molecules partially mimicked the detailed interactions of lipid A to achieve receptor activation. Our results suggest that sulfatides may mediate sterile inflammation or suppress LPS-stimulated inflammation, and that additional endogenous negatively charged lipids with up to six lipid chains of limited length might also bind to TLR4–MD-2 and activate or inhibit this complex.
AB - Many endogenous molecules, mostly proteins, purportedly activate the Toll-like receptor 4 (TLR4)–myeloid differentiation factor-2 (MD-2) complex, the innate immune receptor for lipopolysaccharide (LPS) derived from gram-negative bacteria. However, there is no structural evidence supporting direct TLR4–MD-2 activation by endogenous ligands. Sulfatides (3-O-sulfogalactosylceramides) are natural, abundant sulfated glycolipids that have variously been shown to initiate or suppress inflammatory responses. We show here that short fatty acid (FA) chain sulfatides directly activate mouse TLR4–MD-2 independent of CD14, trigger MyD88- and TRIF-dependent signaling, and stimulate tumor necrosis factor α (TNFα) and type I interferon (IFN) production in mouse macrophages. In contrast to the agonist activity toward the mouse receptor, the tested sulfatides antagonize TLR4–MD-2 activation by LPS in human macrophage-like cells. The agonistic and antagonistic activities of sulfatides require the presence of the sulfate group and are inversely related to the FA chain length. The crystal structure of mouse TLR4–MD-2 in complex with C16-sulfatide revealed that three C16-sulfatide molecules bound to the MD-2 hydrophobic pocket and induced an active dimer conformation of the receptor complex similar to that induced by LPS or lipid A. The three C16-sulfatide molecules partially mimicked the detailed interactions of lipid A to achieve receptor activation. Our results suggest that sulfatides may mediate sterile inflammation or suppress LPS-stimulated inflammation, and that additional endogenous negatively charged lipids with up to six lipid chains of limited length might also bind to TLR4–MD-2 and activate or inhibit this complex.
KW - Autoimmunity
KW - Endogenous ligand
KW - Innate immunity
KW - Toll-like receptor
KW - X-ray crystallography
UR - http://www.scopus.com/inward/record.url?scp=85111030906&partnerID=8YFLogxK
U2 - 10.1073/pnas.2105316118
DO - 10.1073/pnas.2105316118
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 34290146
AN - SCOPUS:85111030906
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 30
M1 - e2105316118
ER -