TY - JOUR
T1 - Structure of the plant photosystem I
AU - Caspy, Ido
AU - Nelson, Nathan
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/4/17
Y1 - 2018/4/17
N2 - Plant photosystem I (PSI) is one of the most intricate membrane complexes in nature. It comprises two complexes, a reaction center and light-harvesting complex (LHC), which together form the PSI–LHC supercomplex. The crystal structure of plant PSI was solved with two distinct crystal forms. The first, crystallized at pH 6.5, exhibited P21 symmetry; the second, crystallized at pH 8.5, exhibited P212121 symmetry. The surfaces involved in binding plastocyanin and ferredoxin are identical in both forms. The crystal structure at 2.6 Å resolution revealed 16 subunits, 45 transmembrane helices, and 232 prosthetic groups, including 143 chlorophyll a, 13 chlorophyll b, 27 β-carotene, 7 lutein, 2 xanthophyll, 1 zeaxanthin, 20 monogalactosyl diglyceride, 7 phosphatidyl diglyceride, 5 digalactosyl diglyceride, 2 calcium ions, 2 phylloquinone, and 3 iron sulfur clusters. The model reveals detailed interactions, providing mechanisms for excitation energy transfer and its modulation in one of nature’s most efficient photochemical machine.
AB - Plant photosystem I (PSI) is one of the most intricate membrane complexes in nature. It comprises two complexes, a reaction center and light-harvesting complex (LHC), which together form the PSI–LHC supercomplex. The crystal structure of plant PSI was solved with two distinct crystal forms. The first, crystallized at pH 6.5, exhibited P21 symmetry; the second, crystallized at pH 8.5, exhibited P212121 symmetry. The surfaces involved in binding plastocyanin and ferredoxin are identical in both forms. The crystal structure at 2.6 Å resolution revealed 16 subunits, 45 transmembrane helices, and 232 prosthetic groups, including 143 chlorophyll a, 13 chlorophyll b, 27 β-carotene, 7 lutein, 2 xanthophyll, 1 zeaxanthin, 20 monogalactosyl diglyceride, 7 phosphatidyl diglyceride, 5 digalactosyl diglyceride, 2 calcium ions, 2 phylloquinone, and 3 iron sulfur clusters. The model reveals detailed interactions, providing mechanisms for excitation energy transfer and its modulation in one of nature’s most efficient photochemical machine.
UR - http://www.scopus.com/inward/record.url?scp=85046885861&partnerID=8YFLogxK
U2 - 10.1042/BST20170299
DO - 10.1042/BST20170299
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:85046885861
SN - 0300-5127
VL - 46
SP - 285
EP - 294
JO - Biochemical Society Transactions
JF - Biochemical Society Transactions
IS - 2
ER -