Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model

Adi Morany, Karin Lavon, Danny Bluestein, Ashraf Hamdan, Rami Haj-Ali

Research output: Contribution to journalArticlepeer-review


The aortic valve (AV) is located between the left ventricle and the aorta and responsible for maintaining an outward unidirectional flow. Many AV hemodynamic and structural aspects of have been extensively studied, however, more sophisticated models are needed to better understand the AV biomechanical behavior. This study deals with integrating a new parametric AV structural model with the electro-mechanical Living Heart Human Model® (LHHM). The LHHM is a finite element model simulating human heart capable of realistic electro-mechanical simulations. Different geometric metrics of AV have been examined. New integrated structural AV model within the LHHM better predict local stresses during the cardiac cycle due to the realistic boundary condition derived from the LHHM. It was found that ellipticity index (EI), calculated as the ratio between the maximal (Max) and minimal (Min) aortic annulus (AA) diameters, well correlates with measured clinical data obtained from patients undergoing computed tomography (CT) while the annular perimeter (Perim) matches the same trend. This increases the confidence in the predicted kinematic behavior, leaflets coaptation, and the overall stresses. From the clinical aspect, the new proposed coupled and integrated AV modeling can serve as a platform for design and implementation of pre-transcatheter aortic valve replacement (TAVR) procedures.

Original languageEnglish
Pages (from-to)441-454
Number of pages14
JournalAnnals of Biomedical Engineering
Issue number1
StatePublished - Jan 2021


  • Aortic valve electro-mechanical response
  • Dynamic aortic valve biomechanics
  • Finite element analysis
  • Living Heart Human Model
  • Stresses prediction


Dive into the research topics of 'Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model'. Together they form a unique fingerprint.

Cite this