TY - GEN

T1 - Strong price of anarchy

AU - Andelman, Nir

AU - Feldman, Michal

AU - Mansour, Yishay

N1 - Publisher Copyright:
Copyright © 2007 by the Association for Computing Machinery, Inc. and the Society for Industrial and Applied Mathematics.

PY - 2007

Y1 - 2007

N2 - A strong equilibrium (Aumann 1959) is a pure Nash equilibrium which is resilient to deviations by coalitions. We define the strong price of anarchy to be the ratio of the worst case strong equilibrium to the social optimum. In contrast to the traditional price of anarchy, which quantifies the loss incurred due to both selfishness and lack of coordination, the strong price of anarchy isolates the loss originated from selfishness from that obtained due to lack of coordination. We study the strong price of anarchy in two settings, one of job scheduling and the other of network creation. In the job scheduling game we show that for unrelated machines the strong price of anarchy can be bounded as a function of the number of machines and the size of the coalition. For the network creation game we show that the strong price of anarchy is at most 2. In both cases we show that a strong equilibrium always exists, except for a well defined subset of network creation games.

AB - A strong equilibrium (Aumann 1959) is a pure Nash equilibrium which is resilient to deviations by coalitions. We define the strong price of anarchy to be the ratio of the worst case strong equilibrium to the social optimum. In contrast to the traditional price of anarchy, which quantifies the loss incurred due to both selfishness and lack of coordination, the strong price of anarchy isolates the loss originated from selfishness from that obtained due to lack of coordination. We study the strong price of anarchy in two settings, one of job scheduling and the other of network creation. In the job scheduling game we show that for unrelated machines the strong price of anarchy can be bounded as a function of the number of machines and the size of the coalition. For the network creation game we show that the strong price of anarchy is at most 2. In both cases we show that a strong equilibrium always exists, except for a well defined subset of network creation games.

UR - http://www.scopus.com/inward/record.url?scp=84969256658&partnerID=8YFLogxK

M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???

AN - SCOPUS:84969256658

T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

SP - 189

EP - 198

BT - Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007

PB - Association for Computing Machinery

T2 - 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007

Y2 - 7 January 2007 through 9 January 2007

ER -