TY - JOUR
T1 - Strain intermittency in shape-memory alloys
AU - Balandraud, Xavier
AU - Barrera, Noemi
AU - Biscari, Paolo
AU - Grédiac, Michel
AU - Zanzotto, Giovanni
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/5/26
Y1 - 2015/5/26
N2 - We study experimentally the intermittent progress of the mechanically induced martensitic transformation in a Cu-Al-Be single crystal through a full-field measurement technique: the grid method. We utilize an in-house, specially designed gravity-based device, wherein a system controlled by water pumps applies a perfectly monotonic uniaxial load through very small force increments. The sample exhibits hysteretic superelastic behavior during the forward and reverse cubic-monoclinic transformation, produced by the evolution of the strain field of the phase microstructures. The in-plane linear strain components are measured on the sample surface during the loading cycle, and we characterize the strain intermittency in a number of ways, showing the emergence of power-law behavior for the strain avalanching over almost six decades of magnitude. We also describe the nonstationarity and the asymmetry observed in the forward versus reverse transformation. The present experimental approach, which allows for the monitoring of the reversible martensitic transformation both locally and globally in the crystal, proves useful and enhances our capabilities in the analysis and possible control of transition-related phenomena in shape-memory alloys.
AB - We study experimentally the intermittent progress of the mechanically induced martensitic transformation in a Cu-Al-Be single crystal through a full-field measurement technique: the grid method. We utilize an in-house, specially designed gravity-based device, wherein a system controlled by water pumps applies a perfectly monotonic uniaxial load through very small force increments. The sample exhibits hysteretic superelastic behavior during the forward and reverse cubic-monoclinic transformation, produced by the evolution of the strain field of the phase microstructures. The in-plane linear strain components are measured on the sample surface during the loading cycle, and we characterize the strain intermittency in a number of ways, showing the emergence of power-law behavior for the strain avalanching over almost six decades of magnitude. We also describe the nonstationarity and the asymmetry observed in the forward versus reverse transformation. The present experimental approach, which allows for the monitoring of the reversible martensitic transformation both locally and globally in the crystal, proves useful and enhances our capabilities in the analysis and possible control of transition-related phenomena in shape-memory alloys.
UR - http://www.scopus.com/inward/record.url?scp=84930216614&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.91.174111
DO - 10.1103/PhysRevB.91.174111
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84930216614
SN - 1098-0121
VL - 91
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 17
M1 - 174111
ER -