TY - JOUR
T1 - Stochastic representation of many-body quantum states
AU - Atanasova, Hristiana
AU - Bernheimer, Liam
AU - Cohen, Guy
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - The quantum many-body problem is ultimately a curse of dimensionality: the state of a system with many particles is determined by a function with many dimensions, which rapidly becomes difficult to efficiently store, evaluate and manipulate numerically. On the other hand, modern machine learning models like deep neural networks can express highly correlated functions in extremely large-dimensional spaces, including those describing quantum mechanical problems. We show that if one represents wavefunctions as a stochastically generated set of sample points, the problem of finding ground states can be reduced to one where the most technically challenging step is that of performing regression—a standard supervised learning task. In the stochastic representation the (anti)symmetric property of fermionic/bosonic wavefunction can be used for data augmentation and learned rather than explicitly enforced. We further demonstrate that propagation of an ansatz towards the ground state can then be performed in a more robust and computationally scalable fashion than traditional variational approaches allow.
AB - The quantum many-body problem is ultimately a curse of dimensionality: the state of a system with many particles is determined by a function with many dimensions, which rapidly becomes difficult to efficiently store, evaluate and manipulate numerically. On the other hand, modern machine learning models like deep neural networks can express highly correlated functions in extremely large-dimensional spaces, including those describing quantum mechanical problems. We show that if one represents wavefunctions as a stochastically generated set of sample points, the problem of finding ground states can be reduced to one where the most technically challenging step is that of performing regression—a standard supervised learning task. In the stochastic representation the (anti)symmetric property of fermionic/bosonic wavefunction can be used for data augmentation and learned rather than explicitly enforced. We further demonstrate that propagation of an ansatz towards the ground state can then be performed in a more robust and computationally scalable fashion than traditional variational approaches allow.
UR - http://www.scopus.com/inward/record.url?scp=85162075367&partnerID=8YFLogxK
U2 - 10.1038/s41467-023-39244-4
DO - 10.1038/s41467-023-39244-4
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 37328458
AN - SCOPUS:85162075367
SN - 2041-1723
VL - 14
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 3601
ER -