STOCHASTIC ELECTRICAL MODEL OF AN INFINITE CLOUD: CHARGE GENERATION AND PRECIPITATION DEVELOPMENT.

William D. Scott, Zev Levin

Research output: Contribution to journalArticlepeer-review

Abstract

A stochastic numerical cloud model is used to investigate simultaneously the growth of precipitation, the formation of electrical charges on the particles, and the development of the ambient electric field utilizing the polarization charging mechanism. The results indicate a close coupling between precipitation growth and electrification. Precipitation is reduced when the electric field reaches magnitudes of kilovolts per centimeter. The distributions of charge on the particles show charges of a realistic magnitude. Simple restraints on the coalescence efficiency based on electric charge show that, indeed, particle charges can have a profound effect on rain development through coalescence. The overall results qualitatively agree with the results from the continuous collection model of A. Ziv and Z. Levin, i. e. , the partial levitation of the particles due to electrical forces and the termination of electric field growth can occur at electric field strengths large enough for lightning.

Original languageEnglish
Pages (from-to)1814-1828
Number of pages15
JournalJournals of the Atmospheric Sciences
Volume32
Issue number9
DOIs
StatePublished - 1975

Fingerprint

Dive into the research topics of 'STOCHASTIC ELECTRICAL MODEL OF AN INFINITE CLOUD: CHARGE GENERATION AND PRECIPITATION DEVELOPMENT.'. Together they form a unique fingerprint.

Cite this