Stable super-resolution of images: Theoretical study

Armin Eftekhari*, Tamir Bendory, Gongguo Tang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We study the ubiquitous super-resolution problem, in which one aims at localizing positive point sources in an image, blurred by the point spread function of the imaging device. To recover the point sources, we propose to solve a convex feasibility program, which simply finds a non-negative Borel measure that agrees with the observations collected by the imaging device. In the absence of imaging noise, we show that solving this convex program uniquely retrieves the point sources, provided that the imaging device collects enough observations. This result holds true if the point spread function of the imaging device can be decomposed into horizontal and vertical components and if the translations of these components form a Chebyshev system, i.e., a system of continuous functions that loosely behave like algebraic polynomials. Building upon the recent results for one-dimensional signals, we prove that this super-resolution algorithm is stable, in the generalized Wasserstein metric, to model mismatch (i.e., when the image is not sparse) and to additive imaging noise. In particular, the recovery error depends on the noise level and how well the image can be approximated with well-separated point sources. As an example, we verify these claims for the important case of a Gaussian point spread function. The proofs rely on the construction of novel interpolating polynomials - which are the main technical contribution of this paper - and partially resolve the question raised in Schiebinger et al. (2017, Inf. Inference, 7, 1-30) about the extension of the standard machinery to higher dimensions.

Original languageEnglish
Pages (from-to)161-193
Number of pages33
JournalInformation and Inference
Volume10
Issue number1
DOIs
StatePublished - 1 Mar 2021
Externally publishedYes

Funding

FundersFunder number
National Science Foundation1704204

    Fingerprint

    Dive into the research topics of 'Stable super-resolution of images: Theoretical study'. Together they form a unique fingerprint.

    Cite this