Stabilizing the Pereira-Stenflo Solitons in Nonlinear Optical Fibers

Nikos Efremidis*, Kyriakos Hizanidis, Boris A. Malomed, Hector E. Nistazakis, Dimitri J. Frantzeskakis

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We study in detail stability of exact chirped solitary-pulse solutions in a model of a filtered nonlinear optical fiber, in which stabilization of the pulses is achieved by means of an extra lossy core, parallel-coupled to the main one. We demonstrate that, in the model's three-dimensional parameter space, there is a vast region where the pulses are fully stable, for both signs of the group-velocity dispersion. These results open way to a stable transmission of optical solitons in the normal-dispersion region and, thus, to an essential expansion of the bandwidth offered by the nonlinear optical fibers for telecommunications. In the cases when the pulses are unstable, we study the development of the instability, which may end up by either a blowup or decay to zero.

Original languageEnglish
Pages (from-to)18-21
Number of pages4
JournalPhysica Scripta
Volume84
StatePublished - 2000

Fingerprint

Dive into the research topics of 'Stabilizing the Pereira-Stenflo Solitons in Nonlinear Optical Fibers'. Together they form a unique fingerprint.

Cite this