Stabilisation of neutral systems with saturating control inputs

J. M.Gomes Da Silva, A. Seuret, E. Fridman, J. P. Richard

Research output: Contribution to journalArticlepeer-review

Abstract

This article focuses on the stabilisation problem of neutral systems in the presence of time-varying delays and control saturation. Based on a descriptor approach and the use of a modified sector relation, global and local stabilisation conditions are derived using Lyapunov-Krasovskii functionals. These conditions, formulated directly as linear matrix inequalities (LMIs), allow one to relate the control law to be computed to a set of admissible initial conditions, for which the asymptotic and exponential stabilities of the closed-loop system are ensured. An extension of these conditions to the particular case of retarded systems is also provided. From the theoretical conditions, optimisation problems with LMI constraints are therefore proposed to compute stabilising state feedback gains with the aim of ensuring stability for a given set of admissible initial conditions or the global stability of the closed-loop system. A numerical example illustrates the application of the proposed results.

Original languageEnglish
Pages (from-to)1093-1103
Number of pages11
JournalInternational Journal of Systems Science
Volume42
Issue number7
DOIs
StatePublished - Jul 2011

Keywords

  • robustness
  • saturation
  • stabilisation
  • stability domains
  • time delay

Fingerprint

Dive into the research topics of 'Stabilisation of neutral systems with saturating control inputs'. Together they form a unique fingerprint.

Cite this