TY - GEN
T1 - Squint Hard Enough
T2 - 32nd USENIX Security Symposium, USENIX Security 2023
AU - Prokos, Jonathan
AU - Fendley, Neil
AU - Green, Matthew
AU - Schuster, Roei
AU - Tromer, Eran
AU - Jois, Tushar M.
AU - Cao, Yinzhi
N1 - Publisher Copyright:
© USENIX Security 2023. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Many online communications systems use perceptual hash matching systems to detect illicit files in user content. These systems employ specialized perceptual hash functions such as Microsoft’s PhotoDNA or Facebook’s PDQ to produce a compact digest of an image file that can be approximately compared to a database of known illicit-content digests. Recently, several proposals have suggested that hash-based matching systems be incorporated into client-side and end-to-end encrypted (E2EE) systems: in these designs, files that register as illicit content will be reported to the provider, while the remaining content will be sent confidentially. By using perceptual hashing to determine confidentiality guarantees, this new setting significantly changes the function of existing perceptual hashing – thus motivating the need to evaluate these functions from an adversarial perspective, using their perceptual capabilities against them. For example, an attacker may attempt to trigger a match on innocuous, but politically-charged, content in an attempt to stifle speech. In this work we develop threat models for perceptual hashing algorithms in an adversarial setting, and present attacks against the two most widely deployed algorithms: PhotoDNA and PDQ. Our results show that it is possible to efficiently generate targeted second-preimage attacks in which an attacker creates a variant of some source image that matches some target digest. As a complement to this main result, we also further investigate the production of images that facilitate detection avoidance attacks, continuing a recent investigation of Jain et al. Our work shows that existing perceptual hash functions are likely insufficiently robust to survive attacks on this new setting.
AB - Many online communications systems use perceptual hash matching systems to detect illicit files in user content. These systems employ specialized perceptual hash functions such as Microsoft’s PhotoDNA or Facebook’s PDQ to produce a compact digest of an image file that can be approximately compared to a database of known illicit-content digests. Recently, several proposals have suggested that hash-based matching systems be incorporated into client-side and end-to-end encrypted (E2EE) systems: in these designs, files that register as illicit content will be reported to the provider, while the remaining content will be sent confidentially. By using perceptual hashing to determine confidentiality guarantees, this new setting significantly changes the function of existing perceptual hashing – thus motivating the need to evaluate these functions from an adversarial perspective, using their perceptual capabilities against them. For example, an attacker may attempt to trigger a match on innocuous, but politically-charged, content in an attempt to stifle speech. In this work we develop threat models for perceptual hashing algorithms in an adversarial setting, and present attacks against the two most widely deployed algorithms: PhotoDNA and PDQ. Our results show that it is possible to efficiently generate targeted second-preimage attacks in which an attacker creates a variant of some source image that matches some target digest. As a complement to this main result, we also further investigate the production of images that facilitate detection avoidance attacks, continuing a recent investigation of Jain et al. Our work shows that existing perceptual hash functions are likely insufficiently robust to survive attacks on this new setting.
UR - http://www.scopus.com/inward/record.url?scp=85164831097&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85164831097
T3 - 32nd USENIX Security Symposium, USENIX Security 2023
SP - 211
EP - 228
BT - 32nd USENIX Security Symposium, USENIX Security 2023
PB - USENIX Association
Y2 - 9 August 2023 through 11 August 2023
ER -