SPoC: Search-based pseudocode to code

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, Percy Liang

Research output: Contribution to journalConference articlepeer-review


We consider the task of mapping pseudocode to executable code, assuming a one-to-one correspondence between lines of pseudocode and lines of code. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that compiles and passes the test cases. While performing a best-first search, compilation errors constitute 88.7% of program failures. To better guide this search, we learn to predict the line of the program responsible for the failure and focus search over alternative translations of the pseudocode for that line. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 C++ programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
StatePublished - 2019
Externally publishedYes
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: 8 Dec 201914 Dec 2019

Cite this