Spatio-temporal action graph networks

Roei Herzig, Elad Levi, Huijuan Xu, Hang Gao, Eli Brosh, Xiaolong Wang, Amir Globerson, Trevor Darrell

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

63 Scopus citations

Abstract

Events defined by the interaction of objects in a scene are often of critical importance; yet important events may have insufficient labeled examples to train a conventional deep model to generalize to future object appearance. Activity recognition models that represent object interactions explicitly have the potential to learn in a more efficient manner than those that represent scenes with global descriptors. We propose a novel inter-object graph representation for activity recognition based on a disentangled graph embedding with direct observation of edge appearance. In contrast to prior efforts, our approach uses explicit appearance for high order relations derived from object-object interaction, formed over regions that are the union of the spatial extent of the constituent objects. We employ a novel factored embedding of the graph structure, disentangling a representation hierarchy formed over spatial dimensions from that found over temporal variation. We demonstrate the effectiveness of our model on the Charades activity recognition benchmark, as well as a new dataset of driving activities focusing on multi-object interactions with near-collision events. Our model offers significantly improved performance compared to baseline approaches without object-graph representations, or with previous graph-based models.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2347-2356
Number of pages10
ISBN (Electronic)9781728150239
DOIs
StatePublished - Oct 2019
Event17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019 - Seoul, Korea, Republic of
Duration: 27 Oct 201928 Oct 2019

Publication series

NameProceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019

Conference

Conference17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period27/10/1928/10/19

Keywords

  • Activity recognition
  • Autonomous driving
  • Collisions
  • Graph neural network

Fingerprint

Dive into the research topics of 'Spatio-temporal action graph networks'. Together they form a unique fingerprint.

Cite this