Spatial Maps: From low rank spectral to sparse spatial functional representations

Andrea Gasparetto, Luca Cosmo, Emanuele Rodola, Michael Bronstein, Andrea Torsello

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

Functional representation is a well-established approach to represent dense correspondences between deformable shapes. The approach provides an efficient low rank representation of a continuous mapping between two shapes, however under that framework the correspondences are only intrinsically captured, which implies that the induced map is not guaranteed to map the whole surface, much less to form a continuous mapping. In this work, we define a novel approach to the computation of a continuous bijective map between two surfaces moving from the low rank spectral representation to a sparse spatial representation. Key to this is the observation that continuity and smoothness of the optimal map induces structure both on the spectral and the spatial domain, the former providing effective low rank approximations, while the latter exhibiting strong sparsity and locality that can be used in the solution of large-scale problems. We cast our approach in terms of the functional transfer through a fuzzy map between shapes satisfying infinitesimal mass transportation at each point. The result is that, not only the spatial map induces a sub-vertex correspondence between the surfaces, but also the transportation of the whole surface, and thus the bijectivity of the induced map is assured. The performance of the proposed method is assessed on several popular benchmarks.

Original languageEnglish
Title of host publicationProceedings - 2017 International Conference on 3D Vision, 3DV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages477-485
Number of pages9
ISBN (Electronic)9781538626108
DOIs
StatePublished - 25 May 2018
Externally publishedYes
Event7th IEEE International Conference on 3D Vision, 3DV 2017 - Qingdao, China
Duration: 10 Oct 201712 Oct 2017

Publication series

NameProceedings - 2017 International Conference on 3D Vision, 3DV 2017

Conference

Conference7th IEEE International Conference on 3D Vision, 3DV 2017
Country/TerritoryChina
CityQingdao
Period10/10/1712/10/17

Keywords

  • Partial-Shape-Matching
  • Shape-Analysis
  • Shape-Matching
  • Spatial-Map

Fingerprint

Dive into the research topics of 'Spatial Maps: From low rank spectral to sparse spatial functional representations'. Together they form a unique fingerprint.

Cite this