Spatial heterogeneity stabilizes predator–prey interactions at the microscale while patch connectivity controls their outcome

Margarita Petrenko, Shmuel P. Friedman, Ronen Fluss, Zohar Pasternak, Amit Huppert, Edouard Jurkevitch*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Natural landscapes are both fragmented and heterogeneous, affecting the distribution of organisms, and their interactions. While predation in homogeneous environments increases the probability of population extinction, fragmentation/heterogeneity promotes coexistence and enhances community stability as shown by experimentation with animals and microorganisms, and supported by theory. Patch connectivity can modulate such effects but how microbial predatory interactions are affected by water-driven connectivity is unknown. In soil, patch habitability by microorganisms, and their connectivity depend upon the water saturation degree (SD). Here, using the obligate bacterial predator Bdellovibrio bacteriovorus, and a Burkholderia prey, we show that soil spatial heterogeneity profoundly affects predatory dynamics, enhancing long-term co-existence of predator and prey in a SD-threshold dependent-manner. However, as patches and connectors cannot be distinguished in these soil matrices, metapopulations cannot be invoked to explain the dynamics of increased persistence. Using a set of experiments combined with statistical and physical models we demonstrate and quantify how under full connectivity, predation is independent of water content but depends on soil microstructure characteristics. In contrast, the SD below which predation is largely impaired corresponds to a threshold below which the water network collapses and water connectivity breaks down, preventing the bacteria to move within the soil matrix.

Original languageEnglish
Pages (from-to)694-704
Number of pages11
JournalEnvironmental Microbiology
Volume22
Issue number2
DOIs
StatePublished - 1 Feb 2020

Funding

FundersFunder number
Israel Science Foundation's1583/12
Korea-Israel Joint Collaboration Fund
Korea‐Israel Joint Collaboration FundK21001001804‐10B1200‐489 21610
German-Israeli Foundation for Scientific Research and DevelopmentI‐2390‐304.6/2015
Ministry of Science, ICT and Future Planning
Israel Science Foundation

    Fingerprint

    Dive into the research topics of 'Spatial heterogeneity stabilizes predator–prey interactions at the microscale while patch connectivity controls their outcome'. Together they form a unique fingerprint.

    Cite this