TY - JOUR
T1 - Spatial and temporal photoacclimation of stylophora pistillata
T2 - Zooxanthella size, pigmentation, location and clade
AU - Winters, Gidon
AU - Beer, Sven
AU - Ben Zvi, Batsheva
AU - Brickner, Itzik
AU - Loya, Yossi
PY - 2009
Y1 - 2009
N2 - Photoacclimation of the symbiotic hermatypic coral Stylophora pistillata was studied both for colonies growing at different depths (1 to 20 m) sampled within the same season ('spatial photoacclimation') and for colonies growing at the same depth (5 m) but sampled throughout the year ('temporal photoacclimation'). Specimens were darker and had increased chlorophyll densities (chlorophyll per coral surface area) under low-light conditions caused both by increased depth and, in shallow-growing specimens, by the winter season. However, while increased depth involved increased zooxanthella chlorophyll content, acclimation to low irradiances by shallow-growing corals during the winter mostly involved an increase in algal density. In shallow-growing corals, both zooxanthella chlorophyll content and coral chlorophyll density fluctuated seasonally in correlation with light more than with nitrogen or temperature. This could be related to the fact that reefs in Eilat, Israel, are exposed to more solar radiation than many other reefs in the world. Histological analyses of high-light corals showed that zooxanthellae were located deeper inside the host tissue and were smaller in diameter compared to zooxanthellae from low-light corals. Additionally, while deep-water colonies hosted clade C zooxanthellae, colonies growing in shallow waters, both in high- and very low-light environments, hosted clade A. These clade differences were found to affect coral physiology, as examined in a short-term thermal stress experiment, with clade-A colonies having higher thermal resilience than clade-C colonies. Taken together, our results show evidence of different mechanisms that help adjust the light-capturing abilities of S. pistillata zooxanthellae to spatial and temporal changes in irradiance.
AB - Photoacclimation of the symbiotic hermatypic coral Stylophora pistillata was studied both for colonies growing at different depths (1 to 20 m) sampled within the same season ('spatial photoacclimation') and for colonies growing at the same depth (5 m) but sampled throughout the year ('temporal photoacclimation'). Specimens were darker and had increased chlorophyll densities (chlorophyll per coral surface area) under low-light conditions caused both by increased depth and, in shallow-growing specimens, by the winter season. However, while increased depth involved increased zooxanthella chlorophyll content, acclimation to low irradiances by shallow-growing corals during the winter mostly involved an increase in algal density. In shallow-growing corals, both zooxanthella chlorophyll content and coral chlorophyll density fluctuated seasonally in correlation with light more than with nitrogen or temperature. This could be related to the fact that reefs in Eilat, Israel, are exposed to more solar radiation than many other reefs in the world. Histological analyses of high-light corals showed that zooxanthellae were located deeper inside the host tissue and were smaller in diameter compared to zooxanthellae from low-light corals. Additionally, while deep-water colonies hosted clade C zooxanthellae, colonies growing in shallow waters, both in high- and very low-light environments, hosted clade A. These clade differences were found to affect coral physiology, as examined in a short-term thermal stress experiment, with clade-A colonies having higher thermal resilience than clade-C colonies. Taken together, our results show evidence of different mechanisms that help adjust the light-capturing abilities of S. pistillata zooxanthellae to spatial and temporal changes in irradiance.
KW - Spatial photoacclimation
KW - Stylophora pistillata
KW - Temporal photoacclimation
KW - Zooxanthella clade
KW - Zooxanthella location
KW - Zooxanthella pigments
UR - http://www.scopus.com/inward/record.url?scp=67651093788&partnerID=8YFLogxK
U2 - 10.3354/meps08036
DO - 10.3354/meps08036
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:67651093788
SN - 0171-8630
VL - 384
SP - 107
EP - 119
JO - Marine Ecology Progress Series
JF - Marine Ecology Progress Series
ER -