Space-time tradeoffs in photo sequencing

Tali Dekel, Yael Moses, Shai Avidan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

Photo-sequencing is the problem of recovering the temporal order of a set of still images of a dynamic event, taken asynchronously by a set of uncalibrated cameras. Solving this problem is a first, crucial step for analyzing (or visualizing) the dynamic content of the scene captured by a large number of freely moving spectators. We propose a geometric based solution, followed by rank aggregation to the photo-sequencing problem. Our algorithm trades spatial certainty for temporal certainty. Whereas the previous solution proposed by [4] relies on two images taken from the same static camera to eliminate uncertainty in space, we drop the static-camera assumption and replace it with temporal information available from images taken from the same (moving) camera. Our method thus overcomes the limitation of the static-camera assumption, and scales much better with the duration of the event and the spread of cameras in space. We present successful results on challenging real data sets and large scale synthetic data (250 images).

Original languageEnglish
Title of host publicationProceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages977-984
Number of pages8
ISBN (Print)9781479928392
DOIs
StatePublished - 2013
Event2013 14th IEEE International Conference on Computer Vision, ICCV 2013 - Sydney, NSW, Australia
Duration: 1 Dec 20138 Dec 2013

Publication series

NameProceedings of the IEEE International Conference on Computer Vision

Conference

Conference2013 14th IEEE International Conference on Computer Vision, ICCV 2013
Country/TerritoryAustralia
CitySydney, NSW
Period1/12/138/12/13

Keywords

  • CrowdCam
  • Photo Sequencing
  • dynamic events
  • multi-view geometry

Fingerprint

Dive into the research topics of 'Space-time tradeoffs in photo sequencing'. Together they form a unique fingerprint.

Cite this