TY - JOUR
T1 - Space and time efficient kernel density estimation in high dimensions
AU - Backurs, Arturs
AU - Indyk, Piotr
AU - Wagner, Tal
N1 - Publisher Copyright:
© 2019 Neural information processing systems foundation. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Recently, Charikar and Siminelakis (2017) presented a framework for kernel density estimation in provably sublinear query time, for kernels that possess a certain hashing-based property. However, their data structure requires a significantly increased super-linear storage space, as well as super-linear preprocessing time. These limitations inhibit the practical applicability of their approach on large datasets. In this work, we present an improvement to their framework that retains the same query time, while requiring only linear space and linear preprocessing time. We instantiate our framework with the Laplacian and Exponential kernels, two popular kernels which possess the aforementioned property. Our experiments on various datasets verify that our approach attains accuracy and query time similar to Charikar and Siminelakis (2017), with significantly improved space and preprocessing time.
AB - Recently, Charikar and Siminelakis (2017) presented a framework for kernel density estimation in provably sublinear query time, for kernels that possess a certain hashing-based property. However, their data structure requires a significantly increased super-linear storage space, as well as super-linear preprocessing time. These limitations inhibit the practical applicability of their approach on large datasets. In this work, we present an improvement to their framework that retains the same query time, while requiring only linear space and linear preprocessing time. We instantiate our framework with the Laplacian and Exponential kernels, two popular kernels which possess the aforementioned property. Our experiments on various datasets verify that our approach attains accuracy and query time similar to Charikar and Siminelakis (2017), with significantly improved space and preprocessing time.
UR - http://www.scopus.com/inward/record.url?scp=85088214667&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85088214667
SN - 1049-5258
VL - 32
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019
Y2 - 8 December 2019 through 14 December 2019
ER -