Solving constrained Horn clauses modulo algebraic data types and recursive functions

K. Hari Govind V, Sharon Shoham, Arie Gurfinkel

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

This work addresses the problem of verifying imperative programs that manipulate data structures, e.g., Rust programs. Data structures are usually modeled by Algebraic Data Types (ADTs) in verification conditions. Inductive invariants of such programs often require recursively defined functions (RDFs) to represent abstractions of data structures. From the logic perspective, this reduces to solving Constrained Horn Clauses (CHCs) modulo both ADT and RDF. The underlying logic with RDFs is undecidable. Thus, even verifying a candidate inductive invariant is undecidable. Similarly, IC3-based algorithms for solving CHCs lose their progress guarantee: they may not find counterexamples when the program is unsafe. We propose a novel IC3-inspired algorithm Racer for solving CHCs modulo ADT and RDF (i.e., automatically synthesizing inductive invariants, as opposed to only verifying them as is done in deductive verification). Racer ensures progress despite the undecidability of the underlying theory, and is guaranteed to terminate with a counterexample for unsafe programs. It works with a general class of RDFs over ADTs called catamorphisms. The key idea is to represent catamorphisms as both CHCs, via relationification, and RDFs, using novel abstractions. Encoding catamorphisms as CHCs allows learning inductive properties of catamorphisms, as well as preserving unsatisfiabilty of the original CHCs despite the use of RDF abstractions, whereas encoding catamorphisms as RDFs allows unfolding the recursive definition, and relying on it in solutions. Abstractions ensure that the underlying theory remains decidable. We implement our approach in Z3 and show that it works well in practice.

Original languageEnglish
Article number3498696
JournalProceedings of the ACM on Programming Languages
Volume6
Issue numberPOPL
DOIs
StatePublished - Jan 2022

Funding

FundersFunder number
MathWorks Inc
Horizon 2020 Framework Programme759102
Natural Sciences and Engineering Research Council of Canada
European Research Council
United States-Israel Binational Science Foundation2016260
Israel Science Foundation1810/18

    Keywords

    • Algebraic Data Types
    • Formal verification
    • Model Checking
    • Recursive Functions

    Fingerprint

    Dive into the research topics of 'Solving constrained Horn clauses modulo algebraic data types and recursive functions'. Together they form a unique fingerprint.

    Cite this