Abstract
We introduce and study both analytically and numerically a class of microelectromechanical chains aiming to turn them into transmission lines of solitons. Mathematically, their analysis reduces to the study of a spatially one-dimensional nonlinear Klein-Gordon equation with a model dependent onsite nonlinearity induced by the electrical forces. Since the basic solitons appear to be unstable for most of the force regimes, we introduce a stabilizing algorithm and demonstrate that it enables a stable and persisting propagation of solitons. Among other fascinating nonlinear formations induced by the presented models, we mention the “meson”: a stable square shaped pulse with sharp fronts that expands with a sonic speed, and “flatons”: flat-top solitons of arbitrary width.
Original language | English |
---|---|
Article number | 123124 |
Journal | Chaos |
Volume | 33 |
Issue number | 12 |
DOIs | |
State | Published - 1 Dec 2023 |