TY - JOUR
T1 - Sokoban percolation on the Bethe lattice
AU - Bonomo, Ofek Lauber
AU - Shitrit, Itamar
AU - Reuveni, Shlomi
N1 - Publisher Copyright:
© 2024 The Author(s). Published by IOP Publishing Ltd.
PY - 2024/9/6
Y1 - 2024/9/6
N2 - ‘With persistence, a drop of water hollows out the stone’ goes the ancient Greek proverb. Yet, canonical percolation models do not account for interactions between a moving tracer and its environment. Recently, we have introduced the Sokoban model, which differs from this convention by allowing a tracer to push single obstacles that block its path. To test how this newfound ability affects percolation, we hereby consider a Bethe lattice on which obstacles are scattered randomly and ask for the probability that the Sokoban percolates through this lattice, i.e. escapes to infinity. We present an exact solution to this problem and determine the escape probability as a function of obstacle density. Similar to regular percolation, we show that the escape probability undergoes a second-order phase transition. We exactly determine the critical obstacle density at which this transition occurs and show that it is higher than that of a tracer without obstacle-pushing abilities. Our findings assert that pushing facilitates percolation on the Bethe lattice, as intuitively expected. This result, however, sharply contrasts with our previous findings on the 2D square lattice, where the Sokoban cannot escape even at obstacle densities well below the regular percolation threshold. This indicates that the presence of a regular percolation transition does not guarantee a percolation transition for a pushy tracer. The stark contrast between the Bethe and 2D lattices also highlights the significant impact of network topology on the effects of obstacle pushing and underscores the necessity for a more comprehensive understanding of percolation phenomena in systems with tracer-media interactions.
AB - ‘With persistence, a drop of water hollows out the stone’ goes the ancient Greek proverb. Yet, canonical percolation models do not account for interactions between a moving tracer and its environment. Recently, we have introduced the Sokoban model, which differs from this convention by allowing a tracer to push single obstacles that block its path. To test how this newfound ability affects percolation, we hereby consider a Bethe lattice on which obstacles are scattered randomly and ask for the probability that the Sokoban percolates through this lattice, i.e. escapes to infinity. We present an exact solution to this problem and determine the escape probability as a function of obstacle density. Similar to regular percolation, we show that the escape probability undergoes a second-order phase transition. We exactly determine the critical obstacle density at which this transition occurs and show that it is higher than that of a tracer without obstacle-pushing abilities. Our findings assert that pushing facilitates percolation on the Bethe lattice, as intuitively expected. This result, however, sharply contrasts with our previous findings on the 2D square lattice, where the Sokoban cannot escape even at obstacle densities well below the regular percolation threshold. This indicates that the presence of a regular percolation transition does not guarantee a percolation transition for a pushy tracer. The stark contrast between the Bethe and 2D lattices also highlights the significant impact of network topology on the effects of obstacle pushing and underscores the necessity for a more comprehensive understanding of percolation phenomena in systems with tracer-media interactions.
KW - Bethe lattice
KW - Sokoban random walk
KW - ant in a labyrinth
KW - percolation
KW - percolation with obstacle pushing
KW - random walks
KW - tracer-media interactions
UR - http://www.scopus.com/inward/record.url?scp=85200408034&partnerID=8YFLogxK
U2 - 10.1088/1751-8121/ad6380
DO - 10.1088/1751-8121/ad6380
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85200408034
SN - 1751-8113
VL - 57
JO - Journal of Physics A: Mathematical and Theoretical
JF - Journal of Physics A: Mathematical and Theoretical
IS - 33
M1 - 33LT01
ER -